{"title":"人类怀孕时间长短的拟议时钟模型。","authors":"Todd Rosen, Bingbing Wang","doi":"10.1530/REP-24-0053","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>The mechanisms that determine the length of pregnancy remain undetermined. Here, we review what has been previously published on the topic and incorporate new data to describe a molecular model in which placental stress and fetal signaling ultimately lead to labor onset in uncomplicated pregnancies.</p><p><strong>Abstract: </strong>The mechanisms that govern the length of human pregnancy have not been determined, while preterm birth remains the leading cause of death and disability in newborns worldwide. Here, we review recent data to generate a novel hypothesis about how the pregnancy clock may function to initiate human labor in uncomplicated pregnancies. In this model, placental stress induced by the growing fetus drives placental production of NFKB, which is then activated by exosomes containing platelet-activating factor and complement 4-binding protein-A from the mature fetus, to drive pro-labor genes in the placenta. A better understanding of the clock that triggers labor may lead to new, more effective therapies to prevent spontaneous preterm birth.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proposed model of a clock that governs the length of human pregnancy.\",\"authors\":\"Todd Rosen, Bingbing Wang\",\"doi\":\"10.1530/REP-24-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>In brief: </strong>The mechanisms that determine the length of pregnancy remain undetermined. Here, we review what has been previously published on the topic and incorporate new data to describe a molecular model in which placental stress and fetal signaling ultimately lead to labor onset in uncomplicated pregnancies.</p><p><strong>Abstract: </strong>The mechanisms that govern the length of human pregnancy have not been determined, while preterm birth remains the leading cause of death and disability in newborns worldwide. Here, we review recent data to generate a novel hypothesis about how the pregnancy clock may function to initiate human labor in uncomplicated pregnancies. In this model, placental stress induced by the growing fetus drives placental production of NFKB, which is then activated by exosomes containing platelet-activating factor and complement 4-binding protein-A from the mature fetus, to drive pro-labor genes in the placenta. A better understanding of the clock that triggers labor may lead to new, more effective therapies to prevent spontaneous preterm birth.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
A proposed model of a clock that governs the length of human pregnancy.
In brief: The mechanisms that determine the length of pregnancy remain undetermined. Here, we review what has been previously published on the topic and incorporate new data to describe a molecular model in which placental stress and fetal signaling ultimately lead to labor onset in uncomplicated pregnancies.
Abstract: The mechanisms that govern the length of human pregnancy have not been determined, while preterm birth remains the leading cause of death and disability in newborns worldwide. Here, we review recent data to generate a novel hypothesis about how the pregnancy clock may function to initiate human labor in uncomplicated pregnancies. In this model, placental stress induced by the growing fetus drives placental production of NFKB, which is then activated by exosomes containing platelet-activating factor and complement 4-binding protein-A from the mature fetus, to drive pro-labor genes in the placenta. A better understanding of the clock that triggers labor may lead to new, more effective therapies to prevent spontaneous preterm birth.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.