{"title":"Gtie-Rt:用于预测以人类代谢途径为靶点的药物的综合图学习模型。","authors":"Hayat Ali Shah, Juan Liu, Zhihui Yang","doi":"10.1142/S0219720024500100","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs often target specific metabolic pathways to produce a therapeutic effect. However, these pathways are complex and interconnected, making it challenging to predict a drug's potential effects on an organism's overall metabolism. The mapping of drugs with targeting metabolic pathways in the organisms can provide a more complete understanding of the metabolic effects of a drug and help to identify potential drug-drug interactions. In this study, we proposed a machine learning hybrid model Graph Transformer Integrated Encoder (GTIE-RT) for mapping drugs to target metabolic pathways in human. The proposed model is a composite of a Graph Convolution Network (GCN) and transformer encoder for graph embedding and attention mechanism. The output of the transformer encoder is then fed into the Extremely Randomized Trees Classifier to predict target metabolic pathways. The evaluation of the GTIE-RT on drugs dataset demonstrates excellent performance metrics, including accuracy (>95%), recall (>92%), precision (>93%) and F1-score (>92%). Compared to other variants and machine learning methods, GTIE-RT consistently shows more reliable results.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2450010"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human.\",\"authors\":\"Hayat Ali Shah, Juan Liu, Zhihui Yang\",\"doi\":\"10.1142/S0219720024500100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drugs often target specific metabolic pathways to produce a therapeutic effect. However, these pathways are complex and interconnected, making it challenging to predict a drug's potential effects on an organism's overall metabolism. The mapping of drugs with targeting metabolic pathways in the organisms can provide a more complete understanding of the metabolic effects of a drug and help to identify potential drug-drug interactions. In this study, we proposed a machine learning hybrid model Graph Transformer Integrated Encoder (GTIE-RT) for mapping drugs to target metabolic pathways in human. The proposed model is a composite of a Graph Convolution Network (GCN) and transformer encoder for graph embedding and attention mechanism. The output of the transformer encoder is then fed into the Extremely Randomized Trees Classifier to predict target metabolic pathways. The evaluation of the GTIE-RT on drugs dataset demonstrates excellent performance metrics, including accuracy (>95%), recall (>92%), precision (>93%) and F1-score (>92%). Compared to other variants and machine learning methods, GTIE-RT consistently shows more reliable results.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\" \",\"pages\":\"2450010\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720024500100\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human.
Drugs often target specific metabolic pathways to produce a therapeutic effect. However, these pathways are complex and interconnected, making it challenging to predict a drug's potential effects on an organism's overall metabolism. The mapping of drugs with targeting metabolic pathways in the organisms can provide a more complete understanding of the metabolic effects of a drug and help to identify potential drug-drug interactions. In this study, we proposed a machine learning hybrid model Graph Transformer Integrated Encoder (GTIE-RT) for mapping drugs to target metabolic pathways in human. The proposed model is a composite of a Graph Convolution Network (GCN) and transformer encoder for graph embedding and attention mechanism. The output of the transformer encoder is then fed into the Extremely Randomized Trees Classifier to predict target metabolic pathways. The evaluation of the GTIE-RT on drugs dataset demonstrates excellent performance metrics, including accuracy (>95%), recall (>92%), precision (>93%) and F1-score (>92%). Compared to other variants and machine learning methods, GTIE-RT consistently shows more reliable results.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.