Phatthamon Kongkhambut, Jayson G Cosme, Jim Skulte, Michelle A Moreno Armijos, Ludwig Mathey, Andreas Hemmerich, Hans Keßler
{"title":"观察从连续晶体到离散晶体的相变。","authors":"Phatthamon Kongkhambut, Jayson G Cosme, Jim Skulte, Michelle A Moreno Armijos, Ludwig Mathey, Andreas Hemmerich, Hans Keßler","doi":"10.1088/1361-6633/ad6585","DOIUrl":null,"url":null,"abstract":"<p><p>Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states, that are characterized by robust self-sustained oscillations, emerging via spontaneous breaking of discrete or continuous time translation symmetry. DTCs are periodically driven systems that oscillate with a subharmonic of the external drive, while CTCs are continuously driven and oscillate with a frequency intrinsic to the system. Here, we explore a phase transition from a continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation frequencyωCTCis prepared in a continuously pumped atom-cavity system. Modulating the pump intensity of the CTC with a frequencyωdrclose to2ωCTCleads to robust locking ofωCTCtoωdr/2, and hence a DTC arises. This phase transition in a quantum many-body system is related to subharmonic injection locking of non-linear mechanical and electronic oscillators or lasers.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of a phase transition from a continuous to a discrete time crystal.\",\"authors\":\"Phatthamon Kongkhambut, Jayson G Cosme, Jim Skulte, Michelle A Moreno Armijos, Ludwig Mathey, Andreas Hemmerich, Hans Keßler\",\"doi\":\"10.1088/1361-6633/ad6585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states, that are characterized by robust self-sustained oscillations, emerging via spontaneous breaking of discrete or continuous time translation symmetry. DTCs are periodically driven systems that oscillate with a subharmonic of the external drive, while CTCs are continuously driven and oscillate with a frequency intrinsic to the system. Here, we explore a phase transition from a continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation frequencyωCTCis prepared in a continuously pumped atom-cavity system. Modulating the pump intensity of the CTC with a frequencyωdrclose to2ωCTCleads to robust locking ofωCTCtoωdr/2, and hence a DTC arises. This phase transition in a quantum many-body system is related to subharmonic injection locking of non-linear mechanical and electronic oscillators or lasers.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ad6585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad6585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observation of a phase transition from a continuous to a discrete time crystal.
Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states, that are characterized by robust self-sustained oscillations, emerging via spontaneous breaking of discrete or continuous time translation symmetry. DTCs are periodically driven systems that oscillate with a subharmonic of the external drive, while CTCs are continuously driven and oscillate with a frequency intrinsic to the system. Here, we explore a phase transition from a continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation frequencyωCTCis prepared in a continuously pumped atom-cavity system. Modulating the pump intensity of the CTC with a frequencyωdrclose to2ωCTCleads to robust locking ofωCTCtoωdr/2, and hence a DTC arises. This phase transition in a quantum many-body system is related to subharmonic injection locking of non-linear mechanical and electronic oscillators or lasers.