{"title":"医学基础模型的多任务学习。","authors":"Jiancheng Yang","doi":"10.1038/s43588-024-00658-9","DOIUrl":null,"url":null,"abstract":"To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"473-474"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task learning for medical foundation models\",\"authors\":\"Jiancheng Yang\",\"doi\":\"10.1038/s43588-024-00658-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 7\",\"pages\":\"473-474\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00658-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00658-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
To address the challenge of pretraining foundational models with large datasets, a multi-task approach is proposed, thus helping to overcome the data scarcity problem in biomedical imaging.