利用基础多任务模型克服生物医学成像中的数据匮乏问题。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-07-19 DOI:10.1038/s43588-024-00662-z
Raphael Schäfer, Till Nicke, Henning Höfener, Annkristin Lange, Dorit Merhof, Friedrich Feuerhake, Volkmar Schulz, Johannes Lotz, Fabian Kiessling
{"title":"利用基础多任务模型克服生物医学成像中的数据匮乏问题。","authors":"Raphael Schäfer, Till Nicke, Henning Höfener, Annkristin Lange, Dorit Merhof, Friedrich Feuerhake, Volkmar Schulz, Johannes Lotz, Fabian Kiessling","doi":"10.1038/s43588-024-00662-z","DOIUrl":null,"url":null,"abstract":"Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a universal biomedical pretrained model (UMedPT) on a multi-task database including tomographic, microscopic and X-ray images, with various labeling strategies such as classification, segmentation and object detection. The UMedPT foundational model outperformed ImageNet pretraining and previous state-of-the-art models. For classification tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required only 50% of the original training data. In an external independent validation, imaging features extracted using UMedPT proved to set a new standard for cross-center transferability. UMedPT, a foundational model for biomedical imaging, has been trained on a variety of medical tasks with different types of label. It has achieved high performance with less training data in various clinical applications.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"495-509"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming data scarcity in biomedical imaging with a foundational multi-task model\",\"authors\":\"Raphael Schäfer, Till Nicke, Henning Höfener, Annkristin Lange, Dorit Merhof, Friedrich Feuerhake, Volkmar Schulz, Johannes Lotz, Fabian Kiessling\",\"doi\":\"10.1038/s43588-024-00662-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a universal biomedical pretrained model (UMedPT) on a multi-task database including tomographic, microscopic and X-ray images, with various labeling strategies such as classification, segmentation and object detection. The UMedPT foundational model outperformed ImageNet pretraining and previous state-of-the-art models. For classification tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required only 50% of the original training data. In an external independent validation, imaging features extracted using UMedPT proved to set a new standard for cross-center transferability. UMedPT, a foundational model for biomedical imaging, has been trained on a variety of medical tasks with different types of label. It has achieved high performance with less training data in various clinical applications.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 7\",\"pages\":\"495-509\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00662-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00662-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

经过大规模预训练的基础模型在非医疗领域取得了巨大成功。然而,训练这些模型通常需要大型、全面的数据集,这与生物医学成像中常见的更小、更专业的数据集形成了鲜明对比。在这里,我们提出了一种多任务学习策略,将训练任务的数量与内存要求分离开来。我们在一个多任务数据库上训练了一个通用生物医学预训练模型(UMedPT),该数据库包括断层扫描、显微镜和 X 射线图像,并采用了分类、分割和对象检测等多种标记策略。UMedPT 基础模型的表现优于 ImageNet 预训练模型和以前的先进模型。对于与预训练数据库相关的分类任务,只需使用 1%的原始训练数据,无需微调即可保持性能。对于域外任务,它只需要原始训练数据的 50%。在外部独立验证中,使用 UMedPT 提取的成像特征被证明是跨中心可转移性的新标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming data scarcity in biomedical imaging with a foundational multi-task model
Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements. We trained a universal biomedical pretrained model (UMedPT) on a multi-task database including tomographic, microscopic and X-ray images, with various labeling strategies such as classification, segmentation and object detection. The UMedPT foundational model outperformed ImageNet pretraining and previous state-of-the-art models. For classification tasks related to the pretraining database, it maintained its performance with only 1% of the original training data and without fine-tuning. For out-of-domain tasks it required only 50% of the original training data. In an external independent validation, imaging features extracted using UMedPT proved to set a new standard for cross-center transferability. UMedPT, a foundational model for biomedical imaging, has been trained on a variety of medical tasks with different types of label. It has achieved high performance with less training data in various clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Collective deliberation driven by AI. Harnessing deep learning to build optimized ligands. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Enhancing protein stability prediction with geometric learning and pre-training strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1