{"title":"探索三阴性乳腺癌细胞中熊果苷的潜在分子靶点和疗效。","authors":"","doi":"10.1016/j.compbiolchem.2024.108154","DOIUrl":null,"url":null,"abstract":"<div><p>Triple negative breast cancer (TNBC) presents a significant global health concern due to its aggressive nature, high mortality rate and limited treatment options, highlighting the urgent need for targeted therapies. Beauvericin, a bioactive fungal secondary metabolite, possess significant anticancer potential, although its molecular targets in cancer cells remain unexplored. This study has investigated possible molecular targets of beauvericin and its therapeutic insights in TNBC cells. <em>In silico</em> studies using molecular docking and MD simulation predicted the molecular targets of beauvericin. The identified targets included MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK with average binding energy of −90.1, −44.3, −72.1, −105 and −60.8 KJ/mol, respectively, implying its multifaceted roles in reversing drug resistance, inhibiting epigenetic modulators and oncogenic tyrosine kinases. Beauvericin has significantly reduced the viability of MDA-MB-231 and MDA-MB-468 cells, with IC<sub>50</sub> concentrations of 4.4 and 3.9 µM, while concurrently elevating the intracellular ROS by 9.0 and 7.9 folds, respectively. Subsequent reduction of mitochondrial transmembrane potential in TNBC cells, has confirmed the induction of oxidative stress, leading to apoptotic cell death, as observed by flow cytometric analyses. Beauvericin has also arrested cell cycle at G1-phase and impaired the spheroid formation and clonal expansion abilities of TNBC cells. The viability of spheroids was reduced upon beauvericin treatment, exhibiting IC<sub>50</sub> concentrations of 10.3 and 6.2 µM in MDA-MB-468 and MDA-MB-231 cells, respectively. In conclusion, beauvericin has demonstrated promising therapeutic potential against TNBC cells through possible inhibition of MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring potential molecular targets and therapeutic efficacy of beauvericin in triple-negative breast cancer cells\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triple negative breast cancer (TNBC) presents a significant global health concern due to its aggressive nature, high mortality rate and limited treatment options, highlighting the urgent need for targeted therapies. Beauvericin, a bioactive fungal secondary metabolite, possess significant anticancer potential, although its molecular targets in cancer cells remain unexplored. This study has investigated possible molecular targets of beauvericin and its therapeutic insights in TNBC cells. <em>In silico</em> studies using molecular docking and MD simulation predicted the molecular targets of beauvericin. The identified targets included MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK with average binding energy of −90.1, −44.3, −72.1, −105 and −60.8 KJ/mol, respectively, implying its multifaceted roles in reversing drug resistance, inhibiting epigenetic modulators and oncogenic tyrosine kinases. Beauvericin has significantly reduced the viability of MDA-MB-231 and MDA-MB-468 cells, with IC<sub>50</sub> concentrations of 4.4 and 3.9 µM, while concurrently elevating the intracellular ROS by 9.0 and 7.9 folds, respectively. Subsequent reduction of mitochondrial transmembrane potential in TNBC cells, has confirmed the induction of oxidative stress, leading to apoptotic cell death, as observed by flow cytometric analyses. Beauvericin has also arrested cell cycle at G1-phase and impaired the spheroid formation and clonal expansion abilities of TNBC cells. The viability of spheroids was reduced upon beauvericin treatment, exhibiting IC<sub>50</sub> concentrations of 10.3 and 6.2 µM in MDA-MB-468 and MDA-MB-231 cells, respectively. In conclusion, beauvericin has demonstrated promising therapeutic potential against TNBC cells through possible inhibition of MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001427\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001427","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring potential molecular targets and therapeutic efficacy of beauvericin in triple-negative breast cancer cells
Triple negative breast cancer (TNBC) presents a significant global health concern due to its aggressive nature, high mortality rate and limited treatment options, highlighting the urgent need for targeted therapies. Beauvericin, a bioactive fungal secondary metabolite, possess significant anticancer potential, although its molecular targets in cancer cells remain unexplored. This study has investigated possible molecular targets of beauvericin and its therapeutic insights in TNBC cells. In silico studies using molecular docking and MD simulation predicted the molecular targets of beauvericin. The identified targets included MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK with average binding energy of −90.1, −44.3, −72.1, −105 and −60.8 KJ/mol, respectively, implying its multifaceted roles in reversing drug resistance, inhibiting epigenetic modulators and oncogenic tyrosine kinases. Beauvericin has significantly reduced the viability of MDA-MB-231 and MDA-MB-468 cells, with IC50 concentrations of 4.4 and 3.9 µM, while concurrently elevating the intracellular ROS by 9.0 and 7.9 folds, respectively. Subsequent reduction of mitochondrial transmembrane potential in TNBC cells, has confirmed the induction of oxidative stress, leading to apoptotic cell death, as observed by flow cytometric analyses. Beauvericin has also arrested cell cycle at G1-phase and impaired the spheroid formation and clonal expansion abilities of TNBC cells. The viability of spheroids was reduced upon beauvericin treatment, exhibiting IC50 concentrations of 10.3 and 6.2 µM in MDA-MB-468 and MDA-MB-231 cells, respectively. In conclusion, beauvericin has demonstrated promising therapeutic potential against TNBC cells through possible inhibition of MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.