用于医学图像分析模型预训练的多任务学习策略。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-07-19 DOI:10.1038/s43588-024-00666-9
{"title":"用于医学图像分析模型预训练的多任务学习策略。","authors":"","doi":"10.1038/s43588-024-00666-9","DOIUrl":null,"url":null,"abstract":"Pretraining powerful deep learning models requires large, comprehensive training datasets, which are often unavailable for medical imaging. In response, the universal biomedical pretrained (UMedPT) foundational model was developed based on multiple small and medium-sized datasets. This model reduced the amount of data required to learn new target tasks by at least 50%.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-task learning strategy to pretrain models for medical image analysis\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00666-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pretraining powerful deep learning models requires large, comprehensive training datasets, which are often unavailable for medical imaging. In response, the universal biomedical pretrained (UMedPT) foundational model was developed based on multiple small and medium-sized datasets. This model reduced the amount of data required to learn new target tasks by at least 50%.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00666-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00666-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对功能强大的深度学习模型进行预训练需要大型、全面的训练数据集,而医学影像通常无法获得这些数据集。为此,基于多个中小型数据集开发了通用生物医学预训练(UMedPT)基础模型。该模型将学习新目标任务所需的数据量减少了至少 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-task learning strategy to pretrain models for medical image analysis
Pretraining powerful deep learning models requires large, comprehensive training datasets, which are often unavailable for medical imaging. In response, the universal biomedical pretrained (UMedPT) foundational model was developed based on multiple small and medium-sized datasets. This model reduced the amount of data required to learn new target tasks by at least 50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Real-time non-line-of-sight computational imaging using spectrum filtering and motion compensation. Deep generative design of RNA aptamers using structural predictions. Extracting reliable quantum outputs for noisy devices. Provable bounds for noise-free expectation values computed from noisy samples. E-waste challenges of generative artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1