{"title":"动态洛伦兹对称破缺系统的一阶相变","authors":"","doi":"10.1016/j.nuclphysb.2024.116625","DOIUrl":null,"url":null,"abstract":"<div><p>A model of <em>N</em> 4-component massless fermions in a quartic self-interaction based on ref. <span><span>[19]</span></span> is investigated in the presence of chemical potential and temperature via optimized perturbation theory that accesses finite-N contributions. We use the generating functional approach to calculate the corrections to the effective potential of the model. The model introduces an auxiliary pseudo-vector field with a nontrivial minimum and is influenced by temperature (<em>T</em>) and chemical potential (<em>μ</em>). These thermodynamic quantities are introduced through Matsubara formalism. Thereby, the integrals are modified, and via the principle of minimum sensitivity, we obtain the gap equations of the model. The correspondent finite-N solutions of these equations define the vacuum states of the model associated with the background pseudo-vector field. In particular, one focuses on its temporal component that acts as an effective chiral chemical potential. We discuss the solutions of the four cases in which <span><math><mo>(</mo><mi>T</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>=</mo><mn>0</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>T</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>≠</mo><mn>0</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>T</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>=</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>T</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>≠</mo><mn>0</mn><mo>)</mo></math></span>, where the effective potential is so obtained as a function of the background vector field, the chemical potential, and the temperature. The model shows the finite-N corrections generate first-order phase transitions on the self-interacting fermions for the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> and the persistence of a second-order phase transition for <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324001913/pdfft?md5=6a15199cbd6d7a49b9f0f84175d479a3&pid=1-s2.0-S0550321324001913-main.pdf","citationCount":"0","resultStr":"{\"title\":\"First-order phase-transition on dynamical Lorentz symmetry breaking system\",\"authors\":\"\",\"doi\":\"10.1016/j.nuclphysb.2024.116625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A model of <em>N</em> 4-component massless fermions in a quartic self-interaction based on ref. <span><span>[19]</span></span> is investigated in the presence of chemical potential and temperature via optimized perturbation theory that accesses finite-N contributions. We use the generating functional approach to calculate the corrections to the effective potential of the model. The model introduces an auxiliary pseudo-vector field with a nontrivial minimum and is influenced by temperature (<em>T</em>) and chemical potential (<em>μ</em>). These thermodynamic quantities are introduced through Matsubara formalism. Thereby, the integrals are modified, and via the principle of minimum sensitivity, we obtain the gap equations of the model. The correspondent finite-N solutions of these equations define the vacuum states of the model associated with the background pseudo-vector field. In particular, one focuses on its temporal component that acts as an effective chiral chemical potential. We discuss the solutions of the four cases in which <span><math><mo>(</mo><mi>T</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>=</mo><mn>0</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>T</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>≠</mo><mn>0</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>T</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>=</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>T</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>≠</mo><mn>0</mn><mo>)</mo></math></span>, where the effective potential is so obtained as a function of the background vector field, the chemical potential, and the temperature. The model shows the finite-N corrections generate first-order phase transitions on the self-interacting fermions for the case <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> and the persistence of a second-order phase transition for <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324001913/pdfft?md5=6a15199cbd6d7a49b9f0f84175d479a3&pid=1-s2.0-S0550321324001913-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324001913\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324001913","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
摘要
基于参考文献[19]的 N 个 4 分量无质量费米子的四元自相互作用模型,通过优化的扰动理论研究了存在化学势和温度时的有限 N 贡献。[19]的模型,通过优化微扰理论研究了存在化学势和温度时的有限 N 贡献。我们使用生成函数法计算模型有效势的修正。该模型引入了一个辅助伪矢量场,该场有一个非rivial的最小值,并受温度(T)和化学势(μ)的影响。这些热力学量是通过松原形式主义引入的。因此,我们修改了积分,并通过最小灵敏度原理得到了模型的间隙方程。这些方程的相应有限 N 解定义了模型与背景伪向量场相关的真空状态。我们尤其关注其作为有效手性化学势的时间分量。我们讨论了 (T=0,μ=0)、(T≠0,μ≠0)、(T≠0,μ=0) 和 (T=0,μ≠0) 四种情况下的解,其中有效化学势是作为背景矢量场、化学势和温度的函数得到的。模型显示,在 N=1 的情况下,有限 N 修正会在自相互作用费米子上产生一阶相变,而在 N≥2 的情况下,二阶相变会持续存在。
First-order phase-transition on dynamical Lorentz symmetry breaking system
A model of N 4-component massless fermions in a quartic self-interaction based on ref. [19] is investigated in the presence of chemical potential and temperature via optimized perturbation theory that accesses finite-N contributions. We use the generating functional approach to calculate the corrections to the effective potential of the model. The model introduces an auxiliary pseudo-vector field with a nontrivial minimum and is influenced by temperature (T) and chemical potential (μ). These thermodynamic quantities are introduced through Matsubara formalism. Thereby, the integrals are modified, and via the principle of minimum sensitivity, we obtain the gap equations of the model. The correspondent finite-N solutions of these equations define the vacuum states of the model associated with the background pseudo-vector field. In particular, one focuses on its temporal component that acts as an effective chiral chemical potential. We discuss the solutions of the four cases in which , , and , where the effective potential is so obtained as a function of the background vector field, the chemical potential, and the temperature. The model shows the finite-N corrections generate first-order phase transitions on the self-interacting fermions for the case and the persistence of a second-order phase transition for .
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.