{"title":"利用机器学习和数据同化同时推断海冰状态和地表发射率模型","authors":"Alan J. Geer","doi":"10.1029/2023MS004080","DOIUrl":null,"url":null,"abstract":"<p>Satellite microwave radiance observations are strongly sensitive to sea ice, but physical descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the radiative transfer is controlled by poorly-known microstructural properties that vary strongly in time and space. A consequence is that surface-sensitive microwave observations are not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than physical methods. An empirical model for sea ice radiative transfer would be helpful but it cannot be trained using standard machine learning techniques because the inputs are mostly unknown. The solution is to simultaneously train the empirical model and a set of empirical inputs: an “empirical state” method, which draws on both generative machine learning and physical data assimilation methodology. A hybrid physical-empirical network describes the known and unknown physics of sea ice and atmospheric radiative transfer. The network is then trained to fit a year of radiance observations from Advanced Microwave Scanning Radiometer 2, using the atmospheric profiles, skin temperature and ocean water emissivity taken from a weather forecasting system. This process estimates maps of the daily sea ice concentration while also learning an empirical model for the sea ice emissivity. The model learns to define its own empirical input space along with daily maps of these empirical inputs. These maps represent the otherwise unknown microstructural properties of the sea ice and snow that affect the radiative transfer. This “empirical state” approach could be used to solve many other problems of earth system data assimilation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004080","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Inference of Sea Ice State and Surface Emissivity Model Using Machine Learning and Data Assimilation\",\"authors\":\"Alan J. Geer\",\"doi\":\"10.1029/2023MS004080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Satellite microwave radiance observations are strongly sensitive to sea ice, but physical descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the radiative transfer is controlled by poorly-known microstructural properties that vary strongly in time and space. A consequence is that surface-sensitive microwave observations are not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than physical methods. An empirical model for sea ice radiative transfer would be helpful but it cannot be trained using standard machine learning techniques because the inputs are mostly unknown. The solution is to simultaneously train the empirical model and a set of empirical inputs: an “empirical state” method, which draws on both generative machine learning and physical data assimilation methodology. A hybrid physical-empirical network describes the known and unknown physics of sea ice and atmospheric radiative transfer. The network is then trained to fit a year of radiance observations from Advanced Microwave Scanning Radiometer 2, using the atmospheric profiles, skin temperature and ocean water emissivity taken from a weather forecasting system. This process estimates maps of the daily sea ice concentration while also learning an empirical model for the sea ice emissivity. The model learns to define its own empirical input space along with daily maps of these empirical inputs. These maps represent the otherwise unknown microstructural properties of the sea ice and snow that affect the radiative transfer. This “empirical state” approach could be used to solve many other problems of earth system data assimilation.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004080\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004080","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Simultaneous Inference of Sea Ice State and Surface Emissivity Model Using Machine Learning and Data Assimilation
Satellite microwave radiance observations are strongly sensitive to sea ice, but physical descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the radiative transfer is controlled by poorly-known microstructural properties that vary strongly in time and space. A consequence is that surface-sensitive microwave observations are not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than physical methods. An empirical model for sea ice radiative transfer would be helpful but it cannot be trained using standard machine learning techniques because the inputs are mostly unknown. The solution is to simultaneously train the empirical model and a set of empirical inputs: an “empirical state” method, which draws on both generative machine learning and physical data assimilation methodology. A hybrid physical-empirical network describes the known and unknown physics of sea ice and atmospheric radiative transfer. The network is then trained to fit a year of radiance observations from Advanced Microwave Scanning Radiometer 2, using the atmospheric profiles, skin temperature and ocean water emissivity taken from a weather forecasting system. This process estimates maps of the daily sea ice concentration while also learning an empirical model for the sea ice emissivity. The model learns to define its own empirical input space along with daily maps of these empirical inputs. These maps represent the otherwise unknown microstructural properties of the sea ice and snow that affect the radiative transfer. This “empirical state” approach could be used to solve many other problems of earth system data assimilation.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.