G. Kimura, K. Shiraishi, Y. Nakamura, S. Kodaira, G. Fujie, R. Arai, G. F. Moore
{"title":"南海海槽基底高地的下推导致的正面推力上升和慢速地震","authors":"G. Kimura, K. Shiraishi, Y. Nakamura, S. Kodaira, G. Fujie, R. Arai, G. F. Moore","doi":"10.1029/2024GC011468","DOIUrl":null,"url":null,"abstract":"<p>Recently, integrated geophysical-geological surveys in the Nankai subduction zone in Japan have revealed that slow earthquakes repeatedly occur beneath the outer wedge of the forearc. During December 2020 to February 2021, clustered slow earthquakes propagated around the frontal thrust of the accretionary wedge. The frontal thrust ramps up from the basal décollement and slips over trench-filling sediment along the landward edge of the Nankai trough floor. Here, the Paleo-Zenisu ridge has been subducted beneath the inner-outer slope border. In addition, ocean floor topography and geologic structure revealed by seismic reflection surveys completed before 2022 document that the basement of the Philippine Sea Plate beneath the frontal thrust has a seamount and a horst-like basement high. The northern edge of the basement high is located at the ramp-up position of the frontal thrust. The 2020–2021 clustered slow earthquakes started at the Paleo-Zenisu ridge and propagated to the topographic highs beneath the deformation front. Considering that the relative plate convergence between the upper Amurian Plate of the Nankai forearc and the subducting Philippine Sea Plate is ∼6.0 cm/year, the basement high at the deformation front has uplifted the frontal crest of the wedge at an average rate of 2.7–5.7 mm/year for several tens to hundred thousand years. These rates are among some of the highest rock uplift rates measured in the world. The slow earthquakes in the off-Kumano Nankai Trough in 2020–2021 are a snapshot of a “living” Nankai frontal thrust during the megathrust interseismic period.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011468","citationCount":"0","resultStr":"{\"title\":\"Frontal Thrust Ramp-Up and Slow Earthquakes Due To Underthrusting of Basement High in the Nankai Trough\",\"authors\":\"G. Kimura, K. Shiraishi, Y. Nakamura, S. Kodaira, G. Fujie, R. Arai, G. F. Moore\",\"doi\":\"10.1029/2024GC011468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, integrated geophysical-geological surveys in the Nankai subduction zone in Japan have revealed that slow earthquakes repeatedly occur beneath the outer wedge of the forearc. During December 2020 to February 2021, clustered slow earthquakes propagated around the frontal thrust of the accretionary wedge. The frontal thrust ramps up from the basal décollement and slips over trench-filling sediment along the landward edge of the Nankai trough floor. Here, the Paleo-Zenisu ridge has been subducted beneath the inner-outer slope border. In addition, ocean floor topography and geologic structure revealed by seismic reflection surveys completed before 2022 document that the basement of the Philippine Sea Plate beneath the frontal thrust has a seamount and a horst-like basement high. The northern edge of the basement high is located at the ramp-up position of the frontal thrust. The 2020–2021 clustered slow earthquakes started at the Paleo-Zenisu ridge and propagated to the topographic highs beneath the deformation front. Considering that the relative plate convergence between the upper Amurian Plate of the Nankai forearc and the subducting Philippine Sea Plate is ∼6.0 cm/year, the basement high at the deformation front has uplifted the frontal crest of the wedge at an average rate of 2.7–5.7 mm/year for several tens to hundred thousand years. These rates are among some of the highest rock uplift rates measured in the world. The slow earthquakes in the off-Kumano Nankai Trough in 2020–2021 are a snapshot of a “living” Nankai frontal thrust during the megathrust interseismic period.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011468\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011468\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011468","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Frontal Thrust Ramp-Up and Slow Earthquakes Due To Underthrusting of Basement High in the Nankai Trough
Recently, integrated geophysical-geological surveys in the Nankai subduction zone in Japan have revealed that slow earthquakes repeatedly occur beneath the outer wedge of the forearc. During December 2020 to February 2021, clustered slow earthquakes propagated around the frontal thrust of the accretionary wedge. The frontal thrust ramps up from the basal décollement and slips over trench-filling sediment along the landward edge of the Nankai trough floor. Here, the Paleo-Zenisu ridge has been subducted beneath the inner-outer slope border. In addition, ocean floor topography and geologic structure revealed by seismic reflection surveys completed before 2022 document that the basement of the Philippine Sea Plate beneath the frontal thrust has a seamount and a horst-like basement high. The northern edge of the basement high is located at the ramp-up position of the frontal thrust. The 2020–2021 clustered slow earthquakes started at the Paleo-Zenisu ridge and propagated to the topographic highs beneath the deformation front. Considering that the relative plate convergence between the upper Amurian Plate of the Nankai forearc and the subducting Philippine Sea Plate is ∼6.0 cm/year, the basement high at the deformation front has uplifted the frontal crest of the wedge at an average rate of 2.7–5.7 mm/year for several tens to hundred thousand years. These rates are among some of the highest rock uplift rates measured in the world. The slow earthquakes in the off-Kumano Nankai Trough in 2020–2021 are a snapshot of a “living” Nankai frontal thrust during the megathrust interseismic period.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.