Lucia Hernandez-Pena, Julia Koch, Edda Bilek, Julia Schräder, Andreas Meyer-Lindenberg, Rebecca Waller, Ute Habel, Rik Sijben, Lisa Wagels
{"title":"兄弟姐妹实时互动中静态和动态社会决策的神经相关性","authors":"Lucia Hernandez-Pena, Julia Koch, Edda Bilek, Julia Schräder, Andreas Meyer-Lindenberg, Rebecca Waller, Ute Habel, Rik Sijben, Lisa Wagels","doi":"10.1002/hbm.26788","DOIUrl":null,"url":null,"abstract":"<p>In traditional game theory tasks, social decision-making is centered on the prediction of the intentions (i.e., mentalizing) of strangers or manipulated responses. In contrast, real-life scenarios often involve familiar individuals in dynamic environments. Further research is needed to explore neural correlates of social decision-making with changes in the available information and environmental settings. This study collected fMRI hyperscanning data (<i>N</i> = 100, 46 same-sex pairs were analyzed) to investigate sibling pairs engaging in an iterated Chicken Game task within a competitive context, including two decision-making phases. In the static phase, participants chose between turning (cooperate) and continuing (defect) in a fixed time window. Participants could estimate the probability of different events based on their priors (previous outcomes and representation of other's intentions) and report their decision plan. The dynamic phase mirrored real-world interactions in which information is continuously changing (replicated within a virtual environment). Individuals had to simultaneously update their beliefs, monitor the actions of the other, and adjust their decisions. Our findings revealed substantial choice consistency between the two phases and evidence for shared neural correlates in mentalizing-related brain regions, including the prefrontal cortex, temporoparietal junction (TPJ), and precuneus. Specific neural correlates were associated with each phase; increased activation of areas associated with action planning and outcome evaluation were found in the static compared with the dynamic phase. Using the opposite contrast, dynamic decision-making showed higher activation in regions related to predicting and monitoring other's actions, including the anterior cingulate cortex and insula. Cooperation (turning), compared with defection (continuing), showed increased activation in mentalizing-related regions only in the static phase, while defection, relative to cooperation, exhibited higher activation in areas associated with conflict monitoring and risk processing in the dynamic phase. Men were less cooperative and had greater TPJ activation. Sibling competitive relationship did not predict competitive behavior but showed a tendency to predict brain activity during dynamic decision-making. Only individual brain activation results are included here, and no interbrain analyses are reported. These neural correlates emphasize the significance of considering varying levels of information available and environmental settings when delving into the intricacies of mentalizing during social decision-making among familiar individuals.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.26788","citationCount":"0","resultStr":"{\"title\":\"Neural correlates of static and dynamic social decision-making in real-time sibling interactions\",\"authors\":\"Lucia Hernandez-Pena, Julia Koch, Edda Bilek, Julia Schräder, Andreas Meyer-Lindenberg, Rebecca Waller, Ute Habel, Rik Sijben, Lisa Wagels\",\"doi\":\"10.1002/hbm.26788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In traditional game theory tasks, social decision-making is centered on the prediction of the intentions (i.e., mentalizing) of strangers or manipulated responses. In contrast, real-life scenarios often involve familiar individuals in dynamic environments. Further research is needed to explore neural correlates of social decision-making with changes in the available information and environmental settings. This study collected fMRI hyperscanning data (<i>N</i> = 100, 46 same-sex pairs were analyzed) to investigate sibling pairs engaging in an iterated Chicken Game task within a competitive context, including two decision-making phases. In the static phase, participants chose between turning (cooperate) and continuing (defect) in a fixed time window. Participants could estimate the probability of different events based on their priors (previous outcomes and representation of other's intentions) and report their decision plan. The dynamic phase mirrored real-world interactions in which information is continuously changing (replicated within a virtual environment). Individuals had to simultaneously update their beliefs, monitor the actions of the other, and adjust their decisions. Our findings revealed substantial choice consistency between the two phases and evidence for shared neural correlates in mentalizing-related brain regions, including the prefrontal cortex, temporoparietal junction (TPJ), and precuneus. Specific neural correlates were associated with each phase; increased activation of areas associated with action planning and outcome evaluation were found in the static compared with the dynamic phase. Using the opposite contrast, dynamic decision-making showed higher activation in regions related to predicting and monitoring other's actions, including the anterior cingulate cortex and insula. Cooperation (turning), compared with defection (continuing), showed increased activation in mentalizing-related regions only in the static phase, while defection, relative to cooperation, exhibited higher activation in areas associated with conflict monitoring and risk processing in the dynamic phase. Men were less cooperative and had greater TPJ activation. Sibling competitive relationship did not predict competitive behavior but showed a tendency to predict brain activity during dynamic decision-making. Only individual brain activation results are included here, and no interbrain analyses are reported. These neural correlates emphasize the significance of considering varying levels of information available and environmental settings when delving into the intricacies of mentalizing during social decision-making among familiar individuals.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.26788\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26788\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Neural correlates of static and dynamic social decision-making in real-time sibling interactions
In traditional game theory tasks, social decision-making is centered on the prediction of the intentions (i.e., mentalizing) of strangers or manipulated responses. In contrast, real-life scenarios often involve familiar individuals in dynamic environments. Further research is needed to explore neural correlates of social decision-making with changes in the available information and environmental settings. This study collected fMRI hyperscanning data (N = 100, 46 same-sex pairs were analyzed) to investigate sibling pairs engaging in an iterated Chicken Game task within a competitive context, including two decision-making phases. In the static phase, participants chose between turning (cooperate) and continuing (defect) in a fixed time window. Participants could estimate the probability of different events based on their priors (previous outcomes and representation of other's intentions) and report their decision plan. The dynamic phase mirrored real-world interactions in which information is continuously changing (replicated within a virtual environment). Individuals had to simultaneously update their beliefs, monitor the actions of the other, and adjust their decisions. Our findings revealed substantial choice consistency between the two phases and evidence for shared neural correlates in mentalizing-related brain regions, including the prefrontal cortex, temporoparietal junction (TPJ), and precuneus. Specific neural correlates were associated with each phase; increased activation of areas associated with action planning and outcome evaluation were found in the static compared with the dynamic phase. Using the opposite contrast, dynamic decision-making showed higher activation in regions related to predicting and monitoring other's actions, including the anterior cingulate cortex and insula. Cooperation (turning), compared with defection (continuing), showed increased activation in mentalizing-related regions only in the static phase, while defection, relative to cooperation, exhibited higher activation in areas associated with conflict monitoring and risk processing in the dynamic phase. Men were less cooperative and had greater TPJ activation. Sibling competitive relationship did not predict competitive behavior but showed a tendency to predict brain activity during dynamic decision-making. Only individual brain activation results are included here, and no interbrain analyses are reported. These neural correlates emphasize the significance of considering varying levels of information available and environmental settings when delving into the intricacies of mentalizing during social decision-making among familiar individuals.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.