基于镍的三维打印支架设计可加速安培级碱性氢进化反应中的气泡逸出

IF 24.5 Q1 CHEMISTRY, PHYSICAL Interdisciplinary Materials Pub Date : 2024-04-29 DOI:10.1002/idm2.12169
Jingxuan Chen, Gangwen Fu, Yu Tian, Xingchuan Li, Mengqi Luo, Xiaoyu Wei, Ting Zhang, Tian Gao, Cheng Chen, Somboon Chaemchuen, Xi Xu, Xing Sun, Tongle Bu, Francis Verpoort, John Wang, Zongkui Kou
{"title":"基于镍的三维打印支架设计可加速安培级碱性氢进化反应中的气泡逸出","authors":"Jingxuan Chen,&nbsp;Gangwen Fu,&nbsp;Yu Tian,&nbsp;Xingchuan Li,&nbsp;Mengqi Luo,&nbsp;Xiaoyu Wei,&nbsp;Ting Zhang,&nbsp;Tian Gao,&nbsp;Cheng Chen,&nbsp;Somboon Chaemchuen,&nbsp;Xi Xu,&nbsp;Xing Sun,&nbsp;Tongle Bu,&nbsp;Francis Verpoort,&nbsp;John Wang,&nbsp;Zongkui Kou","doi":"10.1002/idm2.12169","DOIUrl":null,"url":null,"abstract":"<p>Alkaline hydrogen evolution reaction (HER) for scalable hydrogen production largely hinges on addressing the sluggish bubble-involved kinetics on the traditional Ni-based electrode, especially for ampere-level current densities and beyond. Herein, 3D-printed Ni-based sulfide (3DPNS) electrodes with varying scaffolds are designed and fabricated. In situ observations at microscopic levels demonstrate that the bubble escape velocity increases with the number of hole sides (HS) in the scaffolds. Subsequently, we conduct multiphysics field simulations to illustrate that as the hole shapes transition from square, pentagon, and hexagon to circle, where a noticeable reduction in the bubble-attached HS length and the pressure balance time around the bubbles results in a decrease in bubble size and an acceleration in the rate of bubble escape. Ultimately, the 3DPNS electrode with circular hole configurations exhibits the most favorable HER performance with an overpotential of 297 mV at the current density of up to 1000 mA cm<sup>−2</sup> for 120 h. The present study highlights a scalable and effective electrode scaffold design that promotes low-cost and low-energy green hydrogen production through the ampere-level alkaline HER.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"595-606"},"PeriodicalIF":24.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12169","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional-printed Ni-based scaffold design accelerates bubble escape for ampere-level alkaline hydrogen evolution reaction\",\"authors\":\"Jingxuan Chen,&nbsp;Gangwen Fu,&nbsp;Yu Tian,&nbsp;Xingchuan Li,&nbsp;Mengqi Luo,&nbsp;Xiaoyu Wei,&nbsp;Ting Zhang,&nbsp;Tian Gao,&nbsp;Cheng Chen,&nbsp;Somboon Chaemchuen,&nbsp;Xi Xu,&nbsp;Xing Sun,&nbsp;Tongle Bu,&nbsp;Francis Verpoort,&nbsp;John Wang,&nbsp;Zongkui Kou\",\"doi\":\"10.1002/idm2.12169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alkaline hydrogen evolution reaction (HER) for scalable hydrogen production largely hinges on addressing the sluggish bubble-involved kinetics on the traditional Ni-based electrode, especially for ampere-level current densities and beyond. Herein, 3D-printed Ni-based sulfide (3DPNS) electrodes with varying scaffolds are designed and fabricated. In situ observations at microscopic levels demonstrate that the bubble escape velocity increases with the number of hole sides (HS) in the scaffolds. Subsequently, we conduct multiphysics field simulations to illustrate that as the hole shapes transition from square, pentagon, and hexagon to circle, where a noticeable reduction in the bubble-attached HS length and the pressure balance time around the bubbles results in a decrease in bubble size and an acceleration in the rate of bubble escape. Ultimately, the 3DPNS electrode with circular hole configurations exhibits the most favorable HER performance with an overpotential of 297 mV at the current density of up to 1000 mA cm<sup>−2</sup> for 120 h. The present study highlights a scalable and effective electrode scaffold design that promotes low-cost and low-energy green hydrogen production through the ampere-level alkaline HER.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 4\",\"pages\":\"595-606\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12169\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于可扩展制氢的碱性氢进化反应(HER)在很大程度上取决于能否解决传统镍基电极上迟缓的气泡动力学问题,尤其是在安培级电流密度及以上的情况下。本文设计并制造了具有不同支架的三维打印镍基硫化物(3DPNS)电极。微观层面的现场观察表明,气泡逸出速度随支架中孔边(HS)数量的增加而增加。随后,我们进行了多物理场模拟,以说明当孔的形状从正方形、五边形和六边形过渡到圆形时,气泡附着的 HS 长度和气泡周围的压力平衡时间明显减少,从而导致气泡尺寸减小,气泡逸出速度加快。最终,具有圆形孔构型的 3DPNS 电极表现出了最有利的 HER 性能,在电流密度高达 1000 mA cm-2 的情况下,过电位为 297 mV,持续 120 小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional-printed Ni-based scaffold design accelerates bubble escape for ampere-level alkaline hydrogen evolution reaction

Alkaline hydrogen evolution reaction (HER) for scalable hydrogen production largely hinges on addressing the sluggish bubble-involved kinetics on the traditional Ni-based electrode, especially for ampere-level current densities and beyond. Herein, 3D-printed Ni-based sulfide (3DPNS) electrodes with varying scaffolds are designed and fabricated. In situ observations at microscopic levels demonstrate that the bubble escape velocity increases with the number of hole sides (HS) in the scaffolds. Subsequently, we conduct multiphysics field simulations to illustrate that as the hole shapes transition from square, pentagon, and hexagon to circle, where a noticeable reduction in the bubble-attached HS length and the pressure balance time around the bubbles results in a decrease in bubble size and an acceleration in the rate of bubble escape. Ultimately, the 3DPNS electrode with circular hole configurations exhibits the most favorable HER performance with an overpotential of 297 mV at the current density of up to 1000 mA cm−2 for 120 h. The present study highlights a scalable and effective electrode scaffold design that promotes low-cost and low-energy green hydrogen production through the ampere-level alkaline HER.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Outside Front Cover: Volume 3 Issue 6 Outside Back Cover: Volume 3 Issue 6 Idea of macro-scale and micro-scale prestressed ceramics Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1