{"title":"从高良姜中提取的新拉布烷二萜:针对 PKA-CREB 和 PI3K-Akt 信号轴的新型 GLP-1 促泌剂。","authors":"Pei Liu, Pianchou Gongpan, Sheng-Li Wu, Xin-Yu Li, Xiao-Yan Huang, Yun-Bao Ma, Chang-An Geng","doi":"10.1002/ardp.202400383","DOIUrl":null,"url":null,"abstract":"<p>Glucagon-like peptide-1 (GLP-1) secretagogues are fascinating pharmacotherapies to overcome the defects of GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors in treating diabetes and obesity. To discover new GLP-1 secretagogues from natural sources, alpigalangols A-Q (<b>1–17</b>), 17 new labdane diterpenoids including four unusual nor-labdane and N-containing ones, were isolated from the fruits of <i>Alpinia galanga</i>. Most of the isolates showed GLP-1 promotive effects in NCl-H716 cells, of which compounds <b>3</b>, <b>4</b>, <b>12</b>, and <b>14</b>–<b>17</b> were revealed with high promoting rates of 246.0%–413.8% at 50 µM. A mechanistic study manifested that the most effective compound <b>12</b> upregulated the mRNA expression of <i>Gcg</i> and <i>Pcsk1</i>, and the protein phosphorylation of PKA, CREB, and GSK3β, but was inactive on GPBAR and GPR119 receptors. Network pharmacology analysis indicated that the PI3K-Akt pathway was involved in the GLP-1 stimulation of <b>12</b>, which was highly associated with AKT1, CASP3, PPARG, and ICAM1 proteins. This study suggests that <i>A. galanga</i> is rich in diverse labdane diterpenoids with GLP-1 promoting effects, representing a new type of antidiabetic candidates from natural sources.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New labdane diterpenoids from Alpinia galanga: A new type of GLP-1 secretagogues targeting the PKA-CREB and PI3K-Akt signaling axes\",\"authors\":\"Pei Liu, Pianchou Gongpan, Sheng-Li Wu, Xin-Yu Li, Xiao-Yan Huang, Yun-Bao Ma, Chang-An Geng\",\"doi\":\"10.1002/ardp.202400383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glucagon-like peptide-1 (GLP-1) secretagogues are fascinating pharmacotherapies to overcome the defects of GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors in treating diabetes and obesity. To discover new GLP-1 secretagogues from natural sources, alpigalangols A-Q (<b>1–17</b>), 17 new labdane diterpenoids including four unusual nor-labdane and N-containing ones, were isolated from the fruits of <i>Alpinia galanga</i>. Most of the isolates showed GLP-1 promotive effects in NCl-H716 cells, of which compounds <b>3</b>, <b>4</b>, <b>12</b>, and <b>14</b>–<b>17</b> were revealed with high promoting rates of 246.0%–413.8% at 50 µM. A mechanistic study manifested that the most effective compound <b>12</b> upregulated the mRNA expression of <i>Gcg</i> and <i>Pcsk1</i>, and the protein phosphorylation of PKA, CREB, and GSK3β, but was inactive on GPBAR and GPR119 receptors. Network pharmacology analysis indicated that the PI3K-Akt pathway was involved in the GLP-1 stimulation of <b>12</b>, which was highly associated with AKT1, CASP3, PPARG, and ICAM1 proteins. This study suggests that <i>A. galanga</i> is rich in diverse labdane diterpenoids with GLP-1 promoting effects, representing a new type of antidiabetic candidates from natural sources.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400383\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New labdane diterpenoids from Alpinia galanga: A new type of GLP-1 secretagogues targeting the PKA-CREB and PI3K-Akt signaling axes
Glucagon-like peptide-1 (GLP-1) secretagogues are fascinating pharmacotherapies to overcome the defects of GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors in treating diabetes and obesity. To discover new GLP-1 secretagogues from natural sources, alpigalangols A-Q (1–17), 17 new labdane diterpenoids including four unusual nor-labdane and N-containing ones, were isolated from the fruits of Alpinia galanga. Most of the isolates showed GLP-1 promotive effects in NCl-H716 cells, of which compounds 3, 4, 12, and 14–17 were revealed with high promoting rates of 246.0%–413.8% at 50 µM. A mechanistic study manifested that the most effective compound 12 upregulated the mRNA expression of Gcg and Pcsk1, and the protein phosphorylation of PKA, CREB, and GSK3β, but was inactive on GPBAR and GPR119 receptors. Network pharmacology analysis indicated that the PI3K-Akt pathway was involved in the GLP-1 stimulation of 12, which was highly associated with AKT1, CASP3, PPARG, and ICAM1 proteins. This study suggests that A. galanga is rich in diverse labdane diterpenoids with GLP-1 promoting effects, representing a new type of antidiabetic candidates from natural sources.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.