基于模型的 A 型肉毒杆菌神经毒素对肌肉收缩抑制作用的种间解释。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-19 DOI:10.1002/bdd.2398
Hyo-Jeong Ryu, Seongsung Kwak, Misun Park, Hwi-Yeol Yun
{"title":"基于模型的 A 型肉毒杆菌神经毒素对肌肉收缩抑制作用的种间解释。","authors":"Hyo-Jeong Ryu, Seongsung Kwak, Misun Park, Hwi-Yeol Yun","doi":"10.1002/bdd.2398","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic-pharmacodynamic (K-PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague-Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle-contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness-of-fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose-dependent, with recovery times varying depending on the administered dose. The final K-PD model effectively characterized the data and provided insights into species-specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK-PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based interspecies interpretation of botulinum neurotoxin type A on muscle-contraction inhibition.\",\"authors\":\"Hyo-Jeong Ryu, Seongsung Kwak, Misun Park, Hwi-Yeol Yun\",\"doi\":\"10.1002/bdd.2398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic-pharmacodynamic (K-PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague-Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle-contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness-of-fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose-dependent, with recovery times varying depending on the administered dose. The final K-PD model effectively characterized the data and provided insights into species-specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK-PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/bdd.2398\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bdd.2398","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肉毒杆菌神经毒素(BoNTs)通常用于治疗和美容。其中一种神经毒素,即 BoNT A 型(BoNT/A),因其对肌肉功能和收缩的影响而被广泛研究。尽管 BoNT/A 产品非常重要,但确定这些毒素的血药浓度却很困难。为此,研究人员将重点放在药效学(PD)标记上,包括复合肌肉动作电位(CMAP)和数字外展评分(DAS)。在这项研究中,我们旨在开发一种概率动力学-药效学 (K-PD) 模型,以解释在 BoNT/A 产品开发过程中从小鼠和大鼠身上获得的 CMAP 和 DAS 数据。研究人员还希望更好地了解该模型的估计参数与动物模型和人体反应之间的关系。我们使用癌症研究所的雌性小鼠和 Sprague-Dawley (SD) 大鼠在注射 BoNT/A 后 32 周内测量 CMAP 和 DAS 水平。我们使用虚拟药代动力学 (PK) 区间结合间接反应模型建立了肌肉收缩抑制模型,并使用拟合优度分析、视觉预测检查 (VPC) 和引导分析进行了模型诊断。CMAP 和 DAS 曲线与剂量有关,恢复时间因给药剂量而异。最终的 K-PD 模型有效地描述了数据的特征,并深入揭示了 PK 和 PD 参数的物种特异性差异。总之,这项研究证明了 PK-PD 模型在了解 BoNT/A 作用方面的实用性,并为今后研究其他 BoNT/A 产品奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based interspecies interpretation of botulinum neurotoxin type A on muscle-contraction inhibition.

Botulinum neurotoxins (BoNTs) are commonly used in therapeutic and cosmetic applications. One such neurotoxin, BoNT type A (BoNT/A), has been studied widely for its effects on muscle function and contraction. Despite the importance of BoNT/A products, determining the blood concentrations of these toxins can be challenging. To address this, researchers have focused on pharmacodynamic (PD) markers, including compound muscle action potential (CMAP) and digit abduction scoring (DAS). In this study, we aimed to develop a probabilistic kinetic-pharmacodynamic (K-PD) model to interpret CMAP and DAS data obtained from mice and rats during the development of BoNT/A products. The researchers also wanted to gain a better understanding of how the estimated parameters from the model relate to the bridging of animal models to human responses. We used female Institute of Cancer Research mice and Sprague-Dawley (SD) rats to measure CMAP and DAS levels over 32 weeks after administering BoNT/A. We developed a muscle-contraction inhibition model using a virtual pharmacokinetic (PK) compartment combined with an indirect response model and performed model diagnostics using goodness-of-fit analysis, visual predictive checks (VPC), and bootstrap analysis. The CMAP and DAS profiles were dose-dependent, with recovery times varying depending on the administered dose. The final K-PD model effectively characterized the data and provided insights into species-specific differences in the PK and PD parameters. Overall, this study demonstrated the utility of PK-PD modeling in understanding the effects of BoNT/A and provides a foundation for future research on other BoNT/A products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1