评估地球系统模型中植被建模的机器学习框架

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-19 DOI:10.1029/2023MS004097
Ranjini Swaminathan, Tristan Quaife, Richard Allan
{"title":"评估地球系统模型中植被建模的机器学习框架","authors":"Ranjini Swaminathan,&nbsp;Tristan Quaife,&nbsp;Richard Allan","doi":"10.1029/2023MS004097","DOIUrl":null,"url":null,"abstract":"<p>Vegetation gross primary productivity (GPP) is the single largest carbon flux of the terrestrial biosphere which, in turn, is responsible for sequestering 25%–30% of anthropogenic carbon dioxide emissions. The ability to model GPP is therefore critical for calculating carbon budgets as well as understanding climate feedbacks. Earth system models (ESMs) have the capability to simulate GPP but vary greatly in their individual estimates, resulting in large uncertainties. We describe a machine learning (ML) approach to investigate two key factors responsible for differences in simulated GPP quantities from ESMs: the relative importance of different atmospheric drivers and differences in the representation of land surface processes. We describe the different steps in the development of our interpretable ML framework including the choice of algorithms, parameter tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers responsible for GPP as seen in the literature, for instance drought variables in the Mediterranean region or radiation and temperature in the Arctic region. However differences do exist since models don't necessarily agree on which individual variable is most relevant for GPP. We also explore a distance measure to attribute GPP differences to climate influences versus process differences and provide examples for where our methods work (South Asia, Mediterranean) and where they are inconclusive (Eastern North America).</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004097","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Framework to Evaluate Vegetation Modeling in Earth System Models\",\"authors\":\"Ranjini Swaminathan,&nbsp;Tristan Quaife,&nbsp;Richard Allan\",\"doi\":\"10.1029/2023MS004097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vegetation gross primary productivity (GPP) is the single largest carbon flux of the terrestrial biosphere which, in turn, is responsible for sequestering 25%–30% of anthropogenic carbon dioxide emissions. The ability to model GPP is therefore critical for calculating carbon budgets as well as understanding climate feedbacks. Earth system models (ESMs) have the capability to simulate GPP but vary greatly in their individual estimates, resulting in large uncertainties. We describe a machine learning (ML) approach to investigate two key factors responsible for differences in simulated GPP quantities from ESMs: the relative importance of different atmospheric drivers and differences in the representation of land surface processes. We describe the different steps in the development of our interpretable ML framework including the choice of algorithms, parameter tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers responsible for GPP as seen in the literature, for instance drought variables in the Mediterranean region or radiation and temperature in the Arctic region. However differences do exist since models don't necessarily agree on which individual variable is most relevant for GPP. We also explore a distance measure to attribute GPP differences to climate influences versus process differences and provide examples for where our methods work (South Asia, Mediterranean) and where they are inconclusive (Eastern North America).</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 7\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004097\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004097","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植被总初级生产力(GPP)是陆地生物圈中最大的碳通量,它反过来又负责封存 25%-30% 的人为二氧化碳排放。因此,建立 GPP 模型的能力对于计算碳预算和了解气候反馈至关重要。地球系统模式(ESM)有能力模拟全球升温潜能值(GPP),但其各自的估算结果差异很大,导致了很大的不确定性。我们介绍了一种机器学习(ML)方法,用于研究造成 ESM 模拟的 GPP 数量差异的两个关键因素:不同大气驱动因素的相对重要性和对陆地表面过程表示的差异。我们介绍了开发可解释 ML 框架的不同步骤,包括算法选择、参数调整、训练和评估。我们的研究结果表明,ESM 在很大程度上同意文献中提到的对 GPP 起作用的物理气候驱动因素,例如地中海地区的干旱变量或北极地区的辐射和温度。然而,由于模型并不一定就哪个变量与全球升温潜能值最相关达成一致,因此确实存在差异。我们还探讨了将 GPP 差异归因于气候影响与过程差异的距离测量法,并举例说明了我们的方法在哪些地方有效(南亚、地中海),在哪些地方无效(北美东部)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Framework to Evaluate Vegetation Modeling in Earth System Models

Vegetation gross primary productivity (GPP) is the single largest carbon flux of the terrestrial biosphere which, in turn, is responsible for sequestering 25%–30% of anthropogenic carbon dioxide emissions. The ability to model GPP is therefore critical for calculating carbon budgets as well as understanding climate feedbacks. Earth system models (ESMs) have the capability to simulate GPP but vary greatly in their individual estimates, resulting in large uncertainties. We describe a machine learning (ML) approach to investigate two key factors responsible for differences in simulated GPP quantities from ESMs: the relative importance of different atmospheric drivers and differences in the representation of land surface processes. We describe the different steps in the development of our interpretable ML framework including the choice of algorithms, parameter tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers responsible for GPP as seen in the literature, for instance drought variables in the Mediterranean region or radiation and temperature in the Arctic region. However differences do exist since models don't necessarily agree on which individual variable is most relevant for GPP. We also explore a distance measure to attribute GPP differences to climate influences versus process differences and provide examples for where our methods work (South Asia, Mediterranean) and where they are inconclusive (Eastern North America).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Reconstructing the Tropical Pacific Upper Ocean Using Online Data Assimilation With a Deep Learning Model Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift A Simple Model for the Emergence of Relaxation-Oscillator Convection Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization A Refined Zero-Buoyancy Plume Model for Large-Scale Atmospheric Profiles and Anvil Clouds in Radiative-Convective Equilibrium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1