Sarah Basile, Cristina Parisi, Francesco Bellia, Stefania Zimbone, Giuseppe Arrabito, Daniele Gulli, Bruno Pignataro, Maria Laura Giuffrida, Salvatore Sortino, Agata Copani
{"title":"β-淀粉样蛋白1-42的红光光敏化酪氨酸10硝化作用可阻止该蛋白形成毒性聚集。","authors":"Sarah Basile, Cristina Parisi, Francesco Bellia, Stefania Zimbone, Giuseppe Arrabito, Daniele Gulli, Bruno Pignataro, Maria Laura Giuffrida, Salvatore Sortino, Agata Copani","doi":"10.1021/acschemneuro.4c00284","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of β-amyloid (Aβ), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aβ nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aβ<sub>1-42</sub>. Photonitrated Aβ<sub>1-42</sub> was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aβ<sub>1-42</sub> did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aβ<sub>1-42</sub> showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aβ occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aβ<sub>1-42</sub>.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red-Light-Photosensitized Tyrosine 10 Nitration of β-Amyloid<sub>1-42</sub> Diverts the Protein from Forming Toxic Aggregates.\",\"authors\":\"Sarah Basile, Cristina Parisi, Francesco Bellia, Stefania Zimbone, Giuseppe Arrabito, Daniele Gulli, Bruno Pignataro, Maria Laura Giuffrida, Salvatore Sortino, Agata Copani\",\"doi\":\"10.1021/acschemneuro.4c00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of β-amyloid (Aβ), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aβ nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aβ<sub>1-42</sub>. Photonitrated Aβ<sub>1-42</sub> was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aβ<sub>1-42</sub> did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aβ<sub>1-42</sub> showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aβ occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aβ<sub>1-42</sub>.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00284\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00284","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Red-Light-Photosensitized Tyrosine 10 Nitration of β-Amyloid1-42 Diverts the Protein from Forming Toxic Aggregates.
Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of β-amyloid (Aβ), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aβ nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aβ1-42. Photonitrated Aβ1-42 was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aβ1-42 did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aβ1-42 showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aβ occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aβ1-42.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.