{"title":"新型镁合金基生物可吸收冠状动脉支架在猪冠状动脉模型中的降解。","authors":"Sho Torii, Akiko Yamamoto, Ayako Yoshikawa, Linhai Lu, Makoto Sasaki, Shoko Obuchi, Akira Wada, Hideo Tsukamoto, Gaku Nakazawa","doi":"10.1007/s12928-024-01023-3","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the study is to investigate the safety, feasibility, and degradation profile of a novel Mg alloy-based bioresorbable coronary scaffold (JFK-PRODUCT BRS) with thin struts (110 μm). Polymer- or Mg alloy-based BRSs have not replaced nondegradable metal stents because of the higher prevalence of scaffold thrombosis and restenosis in clinical practice; these poor clinical outcomes were due to inadequate scaffold designs, including thick struts (more than 150 μm) and their inappropriate degradation processes. Fourteen healthy pigs received 17 JFK-PRODUCT BRSs in the coronary arteries and were sacrificed at 1, 6, 12, 18, and 26 months after implantation. Angiography, optical coherence tomography, microfocus X-ray computed tomography (µCT), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and histopathological evaluation were performed. The JFK-PRODUCT had a median percent late recoil of 11.28% at 1 month. The µCT observation confirmed that scaffold discontinuity reached 64.8% at 12 months with increased scaffold inner area thereafter, suggesting artery positive remodeling. The inflammation was mild, peaked at 18 months, and decreased thereafter. The SEM-EDX analysis demonstrated gradual degradation of the scaffold with formation of inorganic deposits, presumed to be calcium phosphates. It also revealed the disappearance of calcium phosphates at 26 months, achieving almost complete replacement of the scaffold by biocomponents. The current study demonstrated the safety and feasibility of JFK-PRODUCT with a lower acute recoil rate despite its thin struts. The scaffolds were almost completely disappeared at 26 months after implantation.</p>","PeriodicalId":9439,"journal":{"name":"Cardiovascular Intervention and Therapeutics","volume":" ","pages":"428-437"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436393/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degradation of a novel magnesium alloy-based bioresorbable coronary scaffold in a swine coronary artery model.\",\"authors\":\"Sho Torii, Akiko Yamamoto, Ayako Yoshikawa, Linhai Lu, Makoto Sasaki, Shoko Obuchi, Akira Wada, Hideo Tsukamoto, Gaku Nakazawa\",\"doi\":\"10.1007/s12928-024-01023-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of the study is to investigate the safety, feasibility, and degradation profile of a novel Mg alloy-based bioresorbable coronary scaffold (JFK-PRODUCT BRS) with thin struts (110 μm). Polymer- or Mg alloy-based BRSs have not replaced nondegradable metal stents because of the higher prevalence of scaffold thrombosis and restenosis in clinical practice; these poor clinical outcomes were due to inadequate scaffold designs, including thick struts (more than 150 μm) and their inappropriate degradation processes. Fourteen healthy pigs received 17 JFK-PRODUCT BRSs in the coronary arteries and were sacrificed at 1, 6, 12, 18, and 26 months after implantation. Angiography, optical coherence tomography, microfocus X-ray computed tomography (µCT), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and histopathological evaluation were performed. The JFK-PRODUCT had a median percent late recoil of 11.28% at 1 month. The µCT observation confirmed that scaffold discontinuity reached 64.8% at 12 months with increased scaffold inner area thereafter, suggesting artery positive remodeling. The inflammation was mild, peaked at 18 months, and decreased thereafter. The SEM-EDX analysis demonstrated gradual degradation of the scaffold with formation of inorganic deposits, presumed to be calcium phosphates. It also revealed the disappearance of calcium phosphates at 26 months, achieving almost complete replacement of the scaffold by biocomponents. The current study demonstrated the safety and feasibility of JFK-PRODUCT with a lower acute recoil rate despite its thin struts. The scaffolds were almost completely disappeared at 26 months after implantation.</p>\",\"PeriodicalId\":9439,\"journal\":{\"name\":\"Cardiovascular Intervention and Therapeutics\",\"volume\":\" \",\"pages\":\"428-437\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436393/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Intervention and Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12928-024-01023-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Intervention and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12928-024-01023-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Degradation of a novel magnesium alloy-based bioresorbable coronary scaffold in a swine coronary artery model.
The objective of the study is to investigate the safety, feasibility, and degradation profile of a novel Mg alloy-based bioresorbable coronary scaffold (JFK-PRODUCT BRS) with thin struts (110 μm). Polymer- or Mg alloy-based BRSs have not replaced nondegradable metal stents because of the higher prevalence of scaffold thrombosis and restenosis in clinical practice; these poor clinical outcomes were due to inadequate scaffold designs, including thick struts (more than 150 μm) and their inappropriate degradation processes. Fourteen healthy pigs received 17 JFK-PRODUCT BRSs in the coronary arteries and were sacrificed at 1, 6, 12, 18, and 26 months after implantation. Angiography, optical coherence tomography, microfocus X-ray computed tomography (µCT), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and histopathological evaluation were performed. The JFK-PRODUCT had a median percent late recoil of 11.28% at 1 month. The µCT observation confirmed that scaffold discontinuity reached 64.8% at 12 months with increased scaffold inner area thereafter, suggesting artery positive remodeling. The inflammation was mild, peaked at 18 months, and decreased thereafter. The SEM-EDX analysis demonstrated gradual degradation of the scaffold with formation of inorganic deposits, presumed to be calcium phosphates. It also revealed the disappearance of calcium phosphates at 26 months, achieving almost complete replacement of the scaffold by biocomponents. The current study demonstrated the safety and feasibility of JFK-PRODUCT with a lower acute recoil rate despite its thin struts. The scaffolds were almost completely disappeared at 26 months after implantation.
期刊介绍:
Cardiovascular Intervention and Therapeutics (CVIT) is an international journal covering the field of cardiovascular disease and includes cardiac (coronary and noncoronary) and peripheral interventions and therapeutics. Articles are subject to peer review and complete editorial evaluation prior to any decision regarding acceptability. CVIT is an official journal of The Japanese Association of Cardiovascular Intervention and Therapeutics.