揭示二磷酸硫胺/CoA 依赖酶家族在一碳伸长过程中的反应中间体

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-07-21 DOI:10.1038/s42004-024-01242-y
Youngchang Kim, Seung Hwan Lee, Priyanka Gade, Maren Nattermann, Natalia Maltseva, Michael Endres, Jing Chen, Philipp Wichmann, Yang Hu, Daniel G. Marchal, Yasuo Yoshikuni, Tobias J. Erb, Ramon Gonzalez, Karolina Michalska, Andrzej Joachimiak
{"title":"揭示二磷酸硫胺/CoA 依赖酶家族在一碳伸长过程中的反应中间体","authors":"Youngchang Kim, Seung Hwan Lee, Priyanka Gade, Maren Nattermann, Natalia Maltseva, Michael Endres, Jing Chen, Philipp Wichmann, Yang Hu, Daniel G. Marchal, Yasuo Yoshikuni, Tobias J. Erb, Ramon Gonzalez, Karolina Michalska, Andrzej Joachimiak","doi":"10.1038/s42004-024-01242-y","DOIUrl":null,"url":null,"abstract":"2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is a thiamine diphosphate (ThDP)-dependent versatile enzyme originally discovered in the mammalian α-oxidation pathway. HACL/S natively cleaves 2-hydroxyacyl-CoAs and, in its reverse direction, condenses formyl-CoA with aldehydes or ketones. The one-carbon elongation biochemistry based on HACL/S has enabled the use of molecules derived from greenhouse gases as biomanufacturing feedstocks. We investigated several HACL/S family members with high activity in the condensation of formyl-CoA and aldehydes, and distinct chain-length specificities and kinetic parameters. Our analysis revealed the structures of enzymes in complex with acyl-CoA substrates and products, several covalent intermediates, bound ThDP and ADP, as well as the C-terminal active site region. One of these observed states corresponds to the intermediary α–carbanion with hydroxymethyl-CoA covalently attached to ThDP. This research distinguishes HACL/S from related sub-families and identifies key residues involved in substrate binding and catalysis. These findings expand our knowledge of acyloin-condensation biochemistry and offer attractive prospects for biocatalysis using carbon elongation. 2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is known to catalyze the condensation of formyl-CoA with aldehydes or ketones, however, the mechanism of one-carbon elongation biochemistry is not well understood. Here, the authors report the structures of enzymes in complex with co-factors, substrates, and products, revealing key intermediates and the C-terminal active site region, and distinguishing them from related sub-families.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271303/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing reaction intermediates in one-carbon elongation by thiamine diphosphate/CoA-dependent enzyme family\",\"authors\":\"Youngchang Kim, Seung Hwan Lee, Priyanka Gade, Maren Nattermann, Natalia Maltseva, Michael Endres, Jing Chen, Philipp Wichmann, Yang Hu, Daniel G. Marchal, Yasuo Yoshikuni, Tobias J. Erb, Ramon Gonzalez, Karolina Michalska, Andrzej Joachimiak\",\"doi\":\"10.1038/s42004-024-01242-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is a thiamine diphosphate (ThDP)-dependent versatile enzyme originally discovered in the mammalian α-oxidation pathway. HACL/S natively cleaves 2-hydroxyacyl-CoAs and, in its reverse direction, condenses formyl-CoA with aldehydes or ketones. The one-carbon elongation biochemistry based on HACL/S has enabled the use of molecules derived from greenhouse gases as biomanufacturing feedstocks. We investigated several HACL/S family members with high activity in the condensation of formyl-CoA and aldehydes, and distinct chain-length specificities and kinetic parameters. Our analysis revealed the structures of enzymes in complex with acyl-CoA substrates and products, several covalent intermediates, bound ThDP and ADP, as well as the C-terminal active site region. One of these observed states corresponds to the intermediary α–carbanion with hydroxymethyl-CoA covalently attached to ThDP. This research distinguishes HACL/S from related sub-families and identifies key residues involved in substrate binding and catalysis. These findings expand our knowledge of acyloin-condensation biochemistry and offer attractive prospects for biocatalysis using carbon elongation. 2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is known to catalyze the condensation of formyl-CoA with aldehydes or ketones, however, the mechanism of one-carbon elongation biochemistry is not well understood. Here, the authors report the structures of enzymes in complex with co-factors, substrates, and products, revealing key intermediates and the C-terminal active site region, and distinguishing them from related sub-families.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01242-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01242-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2-Hydroxyacyl-CoA lyase/synthase(HACL/S)是一种依赖于二磷酸硫胺(ThDP)的多功能酶,最初是在哺乳动物的α-氧化途径中发现的。HACL/S 本能裂解 2-羟基乙酰-CoA,并反向缩合甲酰基-CoA 与醛或酮。基于 HACL/S 的一碳伸长生物化学使从温室气体中提取的分子能够用作生物制造原料。我们研究了几个在甲酰基-CoA 和醛缩合过程中具有高活性、不同链长特异性和动力学参数的 HACL/S 家族成员。我们的分析揭示了与酰基-CoA 底物和产物、几种共价中间产物、结合 ThDP 和 ADP 以及 C 端活性位点区域复合的酶的结构。观察到的其中一种状态对应于与 ThDP 共价连接的羟甲基-CoA 中间体 α-碳酰。这项研究将 HACL/S 与相关亚家族区分开来,并确定了参与底物结合和催化的关键残基。这些发现拓展了我们对酰基缩合生物化学的认识,并为利用碳伸长进行生物催化提供了诱人的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing reaction intermediates in one-carbon elongation by thiamine diphosphate/CoA-dependent enzyme family
2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is a thiamine diphosphate (ThDP)-dependent versatile enzyme originally discovered in the mammalian α-oxidation pathway. HACL/S natively cleaves 2-hydroxyacyl-CoAs and, in its reverse direction, condenses formyl-CoA with aldehydes or ketones. The one-carbon elongation biochemistry based on HACL/S has enabled the use of molecules derived from greenhouse gases as biomanufacturing feedstocks. We investigated several HACL/S family members with high activity in the condensation of formyl-CoA and aldehydes, and distinct chain-length specificities and kinetic parameters. Our analysis revealed the structures of enzymes in complex with acyl-CoA substrates and products, several covalent intermediates, bound ThDP and ADP, as well as the C-terminal active site region. One of these observed states corresponds to the intermediary α–carbanion with hydroxymethyl-CoA covalently attached to ThDP. This research distinguishes HACL/S from related sub-families and identifies key residues involved in substrate binding and catalysis. These findings expand our knowledge of acyloin-condensation biochemistry and offer attractive prospects for biocatalysis using carbon elongation. 2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is known to catalyze the condensation of formyl-CoA with aldehydes or ketones, however, the mechanism of one-carbon elongation biochemistry is not well understood. Here, the authors report the structures of enzymes in complex with co-factors, substrates, and products, revealing key intermediates and the C-terminal active site region, and distinguishing them from related sub-families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Women in Chemistry: Q&A with Dr Shira Joudan. Conditions for enhancement of gas phase chemical reactions inside a dark microwave cavity Machine learning analysis of a large set of homopolymers to predict glass transition temperatures Women in chemistry: Q&A with Professor Tricia Breen Carmichael
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1