{"title":"鸡尾酒会 \"情境中听觉选择性空间注意的电生理学相关性。","authors":"Hongxing Liu, Yanru Bai, Qi Zheng, Jihan Liu, Jianing Zhu, Guangjian Ni","doi":"10.1002/hbm.26793","DOIUrl":null,"url":null,"abstract":"<p>The auditory system can selectively attend to the target source in complex environments, the phenomenon known as the “cocktail party” effect. However, the spatiotemporal dynamics of electrophysiological activity associated with auditory selective spatial attention (ASSA) remain largely unexplored. In this study, single-source and multiple-source paradigms were designed to simulate different auditory environments, and microstate analysis was introduced to reveal the electrophysiological correlates of ASSA. Furthermore, cortical source analysis was employed to reveal the neural activity regions of these microstates. The results showed that five microstates could explain the spatiotemporal dynamics of ASSA, ranging from MS1 to MS5. Notably, MS2 and MS3 showed significantly lower partial properties in multiple-source situations than in single-source situations, whereas MS4 had shorter durations and MS5 longer durations in multiple-source situations than in single-source situations. MS1 had insignificant differences between the two situations. Cortical source analysis showed that the activation regions of these microstates initially transferred from the right temporal cortex to the temporal–parietal cortex, and subsequently to the dorsofrontal cortex. Moreover, the neural activity of the single-source situations was greater than that of the multiple-source situations in MS2 and MS3, correlating with the N1 and P2 components, with the greatest differences observed in the superior temporal gyrus and inferior parietal lobule. These findings suggest that these specific microstates and their associated activation regions may serve as promising substrates for decoding ASSA in complex environments.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261592/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological correlation of auditory selective spatial attention in the “cocktail party” situation\",\"authors\":\"Hongxing Liu, Yanru Bai, Qi Zheng, Jihan Liu, Jianing Zhu, Guangjian Ni\",\"doi\":\"10.1002/hbm.26793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The auditory system can selectively attend to the target source in complex environments, the phenomenon known as the “cocktail party” effect. However, the spatiotemporal dynamics of electrophysiological activity associated with auditory selective spatial attention (ASSA) remain largely unexplored. In this study, single-source and multiple-source paradigms were designed to simulate different auditory environments, and microstate analysis was introduced to reveal the electrophysiological correlates of ASSA. Furthermore, cortical source analysis was employed to reveal the neural activity regions of these microstates. The results showed that five microstates could explain the spatiotemporal dynamics of ASSA, ranging from MS1 to MS5. Notably, MS2 and MS3 showed significantly lower partial properties in multiple-source situations than in single-source situations, whereas MS4 had shorter durations and MS5 longer durations in multiple-source situations than in single-source situations. MS1 had insignificant differences between the two situations. Cortical source analysis showed that the activation regions of these microstates initially transferred from the right temporal cortex to the temporal–parietal cortex, and subsequently to the dorsofrontal cortex. Moreover, the neural activity of the single-source situations was greater than that of the multiple-source situations in MS2 and MS3, correlating with the N1 and P2 components, with the greatest differences observed in the superior temporal gyrus and inferior parietal lobule. These findings suggest that these specific microstates and their associated activation regions may serve as promising substrates for decoding ASSA in complex environments.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26793\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26793","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Electrophysiological correlation of auditory selective spatial attention in the “cocktail party” situation
The auditory system can selectively attend to the target source in complex environments, the phenomenon known as the “cocktail party” effect. However, the spatiotemporal dynamics of electrophysiological activity associated with auditory selective spatial attention (ASSA) remain largely unexplored. In this study, single-source and multiple-source paradigms were designed to simulate different auditory environments, and microstate analysis was introduced to reveal the electrophysiological correlates of ASSA. Furthermore, cortical source analysis was employed to reveal the neural activity regions of these microstates. The results showed that five microstates could explain the spatiotemporal dynamics of ASSA, ranging from MS1 to MS5. Notably, MS2 and MS3 showed significantly lower partial properties in multiple-source situations than in single-source situations, whereas MS4 had shorter durations and MS5 longer durations in multiple-source situations than in single-source situations. MS1 had insignificant differences between the two situations. Cortical source analysis showed that the activation regions of these microstates initially transferred from the right temporal cortex to the temporal–parietal cortex, and subsequently to the dorsofrontal cortex. Moreover, the neural activity of the single-source situations was greater than that of the multiple-source situations in MS2 and MS3, correlating with the N1 and P2 components, with the greatest differences observed in the superior temporal gyrus and inferior parietal lobule. These findings suggest that these specific microstates and their associated activation regions may serve as promising substrates for decoding ASSA in complex environments.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.