Dongmei Ji, Weina Shen, Ting Li, Huan Wang, Jianling Bai, Junning Cao, Xichun Hu
{"title":"脂质体伊立替康(HR070803)联合 5-氟尿嘧啶和白消安治疗晚期实体瘤患者:1b 期剂量递增和扩展研究。","authors":"Dongmei Ji, Weina Shen, Ting Li, Huan Wang, Jianling Bai, Junning Cao, Xichun Hu","doi":"10.1007/s10637-024-01442-2","DOIUrl":null,"url":null,"abstract":"<p><p>This phase 1b study aimed to evaluate the dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics, and preliminary efficacy of HR070803, a novel nanoliposomal formulation of irinotecan, in combination with 5-fluorouracil and leucovorin in patients with pretreated advanced solid tumors. This study consisted of dose-escalation and expansion stages. Dose escalation was performed with a traditional 3 + 3 design; patients received intravenous infusion of HR070803 from 60 to 80 mg/m<sup>2</sup>, followed by leucovorin (200 mg/m<sup>2</sup>) and 5-fluorouracil (2000 mg/m<sup>2</sup>) every 2 weeks. In the expansion stage, patients received treatments at selected tolerable dose. Fifteen patients received treatments at 60 mg/m<sup>2</sup> (n = 12) and 80 mg/m<sup>2</sup> (n = 3). DLTs occurred in 2 patients at 80 mg/m<sup>2</sup> (grade 2 neutropenia that resulted in a dose delay of ≥ 7 days, n = 1; grade 3 febrile neutropenia, n = 1). The MTD was determined to be 60 mg/m<sup>2</sup>. The most frequent HR070803related adverse events included anorexia, leukopenia, neutropenia, nausea, fatigue, and diarrhea. SN-38, the active metabolite of irinotecan, exhibited lower maximum plasma concentrations and a prolonged terminal half-life when irinotecan was administered via nanoliposome compared to conventional injection. Overall, 4 patients achieved a partial response (confirmed, n = 2), and 9 had stable disease. The MTD of HR070803 was 60 mg/m<sup>2</sup> when infused with 5-fluorouracil and leucovorin. Nanoliposomal encapsulation modified the pharmacokinetics of irinotecan and SN-38. HR070803 with 5-fluorouracil and leucovorin demonstrated a manageable safety profile and promising antitumor efficacy in advanced solid tumors. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05086848. Retrospectively registered on Oct. 12, 2021.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"462-470"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liposomal irinotecan (HR070803) in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors: a phase 1b dose-escalation and expansion study.\",\"authors\":\"Dongmei Ji, Weina Shen, Ting Li, Huan Wang, Jianling Bai, Junning Cao, Xichun Hu\",\"doi\":\"10.1007/s10637-024-01442-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This phase 1b study aimed to evaluate the dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics, and preliminary efficacy of HR070803, a novel nanoliposomal formulation of irinotecan, in combination with 5-fluorouracil and leucovorin in patients with pretreated advanced solid tumors. This study consisted of dose-escalation and expansion stages. Dose escalation was performed with a traditional 3 + 3 design; patients received intravenous infusion of HR070803 from 60 to 80 mg/m<sup>2</sup>, followed by leucovorin (200 mg/m<sup>2</sup>) and 5-fluorouracil (2000 mg/m<sup>2</sup>) every 2 weeks. In the expansion stage, patients received treatments at selected tolerable dose. Fifteen patients received treatments at 60 mg/m<sup>2</sup> (n = 12) and 80 mg/m<sup>2</sup> (n = 3). DLTs occurred in 2 patients at 80 mg/m<sup>2</sup> (grade 2 neutropenia that resulted in a dose delay of ≥ 7 days, n = 1; grade 3 febrile neutropenia, n = 1). The MTD was determined to be 60 mg/m<sup>2</sup>. The most frequent HR070803related adverse events included anorexia, leukopenia, neutropenia, nausea, fatigue, and diarrhea. SN-38, the active metabolite of irinotecan, exhibited lower maximum plasma concentrations and a prolonged terminal half-life when irinotecan was administered via nanoliposome compared to conventional injection. Overall, 4 patients achieved a partial response (confirmed, n = 2), and 9 had stable disease. The MTD of HR070803 was 60 mg/m<sup>2</sup> when infused with 5-fluorouracil and leucovorin. Nanoliposomal encapsulation modified the pharmacokinetics of irinotecan and SN-38. HR070803 with 5-fluorouracil and leucovorin demonstrated a manageable safety profile and promising antitumor efficacy in advanced solid tumors. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05086848. Retrospectively registered on Oct. 12, 2021.</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\" \",\"pages\":\"462-470\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-024-01442-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01442-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Liposomal irinotecan (HR070803) in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors: a phase 1b dose-escalation and expansion study.
This phase 1b study aimed to evaluate the dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetics, and preliminary efficacy of HR070803, a novel nanoliposomal formulation of irinotecan, in combination with 5-fluorouracil and leucovorin in patients with pretreated advanced solid tumors. This study consisted of dose-escalation and expansion stages. Dose escalation was performed with a traditional 3 + 3 design; patients received intravenous infusion of HR070803 from 60 to 80 mg/m2, followed by leucovorin (200 mg/m2) and 5-fluorouracil (2000 mg/m2) every 2 weeks. In the expansion stage, patients received treatments at selected tolerable dose. Fifteen patients received treatments at 60 mg/m2 (n = 12) and 80 mg/m2 (n = 3). DLTs occurred in 2 patients at 80 mg/m2 (grade 2 neutropenia that resulted in a dose delay of ≥ 7 days, n = 1; grade 3 febrile neutropenia, n = 1). The MTD was determined to be 60 mg/m2. The most frequent HR070803related adverse events included anorexia, leukopenia, neutropenia, nausea, fatigue, and diarrhea. SN-38, the active metabolite of irinotecan, exhibited lower maximum plasma concentrations and a prolonged terminal half-life when irinotecan was administered via nanoliposome compared to conventional injection. Overall, 4 patients achieved a partial response (confirmed, n = 2), and 9 had stable disease. The MTD of HR070803 was 60 mg/m2 when infused with 5-fluorouracil and leucovorin. Nanoliposomal encapsulation modified the pharmacokinetics of irinotecan and SN-38. HR070803 with 5-fluorouracil and leucovorin demonstrated a manageable safety profile and promising antitumor efficacy in advanced solid tumors. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05086848. Retrospectively registered on Oct. 12, 2021.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.