深度学习支持的高速、多参数漫反射光学断层成像。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-07-01 Epub Date: 2024-07-19 DOI:10.1117/1.JBO.29.7.076004
Robin Dale, Biao Zheng, Felipe Orihuela-Espina, Nicholas Ross, Thomas D O'Sullivan, Scott Howard, Hamid Dehghani
{"title":"深度学习支持的高速、多参数漫反射光学断层成像。","authors":"Robin Dale, Biao Zheng, Felipe Orihuela-Espina, Nicholas Ross, Thomas D O'Sullivan, Scott Howard, Hamid Dehghani","doi":"10.1117/1.JBO.29.7.076004","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Frequency-domain diffuse optical tomography (FD-DOT) could enhance clinical breast tumor characterization. However, conventional diffuse optical tomography (DOT) image reconstruction algorithms require case-by-case expert tuning and are too computationally intensive to provide feedback during a scan. Deep learning (DL) algorithms front-load computational and tuning costs, enabling high-speed, high-fidelity FD-DOT.</p><p><strong>Aim: </strong>We aim to demonstrate a simultaneous reconstruction of three-dimensional absorption and reduced scattering coefficients using DL-FD-DOT, with a view toward real-time imaging with a handheld probe.</p><p><strong>Approach: </strong>A DL model was trained to solve the DOT inverse problem using a realistically simulated FD-DOT dataset emulating a handheld probe for human breast imaging and tested using both synthetic and experimental data.</p><p><strong>Results: </strong>Over a test set of 300 simulated tissue phantoms for absorption and scattering reconstructions, the DL-DOT model reduced the root mean square error by <math><mrow><mn>12</mn> <mo>%</mo> <mo>±</mo> <mn>40</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>23</mn> <mo>%</mo> <mo>±</mo> <mn>40</mn> <mo>%</mo></mrow> </math> , increased the spatial similarity by <math><mrow><mn>17</mn> <mo>%</mo> <mo>±</mo> <mn>17</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>9</mn> <mo>%</mo> <mo>±</mo> <mn>15</mn> <mo>%</mo></mrow> </math> , increased the anomaly contrast accuracy by <math><mrow><mn>9</mn> <mo>%</mo> <mo>±</mo> <mn>9</mn> <mo>%</mo></mrow> </math> ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ), and reduced the crosstalk by <math><mrow><mn>5</mn> <mo>%</mo> <mo>±</mo> <mn>18</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>7</mn> <mo>%</mo> <mo>±</mo> <mn>11</mn> <mo>%</mo></mrow> </math> , respectively, compared with model-based tomography. The average reconstruction time was reduced from 3.8 min to 0.02 s for a single reconstruction. The model was successfully verified using two tumor-emulating optical phantoms.</p><p><strong>Conclusions: </strong>There is clinical potential for real-time functional imaging of human breast tissue using DL and FD-DOT.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 7","pages":"076004"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-enabled high-speed, multi-parameter diffuse optical tomography.\",\"authors\":\"Robin Dale, Biao Zheng, Felipe Orihuela-Espina, Nicholas Ross, Thomas D O'Sullivan, Scott Howard, Hamid Dehghani\",\"doi\":\"10.1117/1.JBO.29.7.076004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Frequency-domain diffuse optical tomography (FD-DOT) could enhance clinical breast tumor characterization. However, conventional diffuse optical tomography (DOT) image reconstruction algorithms require case-by-case expert tuning and are too computationally intensive to provide feedback during a scan. Deep learning (DL) algorithms front-load computational and tuning costs, enabling high-speed, high-fidelity FD-DOT.</p><p><strong>Aim: </strong>We aim to demonstrate a simultaneous reconstruction of three-dimensional absorption and reduced scattering coefficients using DL-FD-DOT, with a view toward real-time imaging with a handheld probe.</p><p><strong>Approach: </strong>A DL model was trained to solve the DOT inverse problem using a realistically simulated FD-DOT dataset emulating a handheld probe for human breast imaging and tested using both synthetic and experimental data.</p><p><strong>Results: </strong>Over a test set of 300 simulated tissue phantoms for absorption and scattering reconstructions, the DL-DOT model reduced the root mean square error by <math><mrow><mn>12</mn> <mo>%</mo> <mo>±</mo> <mn>40</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>23</mn> <mo>%</mo> <mo>±</mo> <mn>40</mn> <mo>%</mo></mrow> </math> , increased the spatial similarity by <math><mrow><mn>17</mn> <mo>%</mo> <mo>±</mo> <mn>17</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>9</mn> <mo>%</mo> <mo>±</mo> <mn>15</mn> <mo>%</mo></mrow> </math> , increased the anomaly contrast accuracy by <math><mrow><mn>9</mn> <mo>%</mo> <mo>±</mo> <mn>9</mn> <mo>%</mo></mrow> </math> ( <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> ), and reduced the crosstalk by <math><mrow><mn>5</mn> <mo>%</mo> <mo>±</mo> <mn>18</mn> <mo>%</mo></mrow> </math> and <math><mrow><mn>7</mn> <mo>%</mo> <mo>±</mo> <mn>11</mn> <mo>%</mo></mrow> </math> , respectively, compared with model-based tomography. The average reconstruction time was reduced from 3.8 min to 0.02 s for a single reconstruction. The model was successfully verified using two tumor-emulating optical phantoms.</p><p><strong>Conclusions: </strong>There is clinical potential for real-time functional imaging of human breast tissue using DL and FD-DOT.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 7\",\"pages\":\"076004\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.7.076004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.7.076004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:频域弥散光学断层扫描(FD-DOT)可增强临床乳腺肿瘤特征描述。然而,传统的漫反射光学断层成像(DOT)图像重建算法需要专家根据具体情况进行调整,而且计算量过大,无法在扫描过程中提供反馈。深度学习(DL)算法将计算和调整成本前置,实现了高速、高保真的 FD-DOT。目的:我们旨在展示使用 DL-FD-DOT 同时重建三维吸收和降低散射系数的方法,以期实现手持探针的实时成像:方法:训练一个 DL 模型,利用真实模拟的 FD-DOT 数据集解决 DOT 逆问题,模拟用于人体乳房成像的手持探头,并利用合成数据和实验数据进行测试:与基于模型的层析成像相比,在 300 个模拟组织模型的吸收和散射重建测试集中,DL-DOT 模型分别将均方根误差降低了 12 % ± 40 % 和 23 % ± 40 %,将空间相似性提高了 17 % ± 17 % 和 9 % ± 15 %,将异常对比精度提高了 9 % ± 9 % ( μ a),并将串扰分别降低了 5 % ± 18 % 和 7 % ± 11 %。单次重建的平均时间从 3.8 分钟减少到 0.02 秒。该模型通过两个肿瘤模拟光学模型成功验证:使用 DL 和 FD-DOT 对人体乳腺组织进行实时功能成像具有临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-enabled high-speed, multi-parameter diffuse optical tomography.

Significance: Frequency-domain diffuse optical tomography (FD-DOT) could enhance clinical breast tumor characterization. However, conventional diffuse optical tomography (DOT) image reconstruction algorithms require case-by-case expert tuning and are too computationally intensive to provide feedback during a scan. Deep learning (DL) algorithms front-load computational and tuning costs, enabling high-speed, high-fidelity FD-DOT.

Aim: We aim to demonstrate a simultaneous reconstruction of three-dimensional absorption and reduced scattering coefficients using DL-FD-DOT, with a view toward real-time imaging with a handheld probe.

Approach: A DL model was trained to solve the DOT inverse problem using a realistically simulated FD-DOT dataset emulating a handheld probe for human breast imaging and tested using both synthetic and experimental data.

Results: Over a test set of 300 simulated tissue phantoms for absorption and scattering reconstructions, the DL-DOT model reduced the root mean square error by 12 % ± 40 % and 23 % ± 40 % , increased the spatial similarity by 17 % ± 17 % and 9 % ± 15 % , increased the anomaly contrast accuracy by 9 % ± 9 % ( μ a ), and reduced the crosstalk by 5 % ± 18 % and 7 % ± 11 % , respectively, compared with model-based tomography. The average reconstruction time was reduced from 3.8 min to 0.02 s for a single reconstruction. The model was successfully verified using two tumor-emulating optical phantoms.

Conclusions: There is clinical potential for real-time functional imaging of human breast tissue using DL and FD-DOT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems. Comparing spatial distributions of ALA-PpIX and indocyanine green in a whole pig brain glioma model using 3D fluorescence cryotomography. Detection properties of indium-111 and IRDye800CW for intraoperative molecular imaging use across tissue phantom models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1