Kdm4d 突变小鼠表现出精子活力受损和不育。

IF 1.9 4区 生物学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Reproduction and Development Pub Date : 2024-07-22 DOI:10.1262/jrd.2024-039
Zhuoran Xu, Yuka Fujimoto, Mizuki Sakamoto, Daiyu Ito, Masahito Ikawa, Takashi Ishiuchi
{"title":"Kdm4d 突变小鼠表现出精子活力受损和不育。","authors":"Zhuoran Xu, Yuka Fujimoto, Mizuki Sakamoto, Daiyu Ito, Masahito Ikawa, Takashi Ishiuchi","doi":"10.1262/jrd.2024-039","DOIUrl":null,"url":null,"abstract":"<p><p>Regulation of gene expression through histone modifications underlies cell homeostasis and differentiation. Kdm4d and Kdm4dl exhibited a high degree of similarity and demethylated H3K9me3. However, the physiological functions of these proteins remain unclear. In this study, we generated Kdm4dl mutant mice and found that Kdm4dl was dispensable for mouse development. However, through the generation of Kdm4d mutant mice, we unexpectedly found that Kdm4d mutant male mice were subfertile because of impaired sperm motility. The absence of Kdm4d was associated with an altered distribution of H3K9me3 in round spermatids, suggesting that the Kdm4d-mediated adjustment of H3K9me3 levels is required to generate motile sperm. Further analysis revealed that the absence of Kdm4d did not affect the functionality of sperm nuclei in generating offspring. As KDM4D is specifically expressed in the human testes, our results suggest that KDM4D expression may be a risk factor for human infertility.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kdm4d mutant mice show impaired sperm motility and subfertility.\",\"authors\":\"Zhuoran Xu, Yuka Fujimoto, Mizuki Sakamoto, Daiyu Ito, Masahito Ikawa, Takashi Ishiuchi\",\"doi\":\"10.1262/jrd.2024-039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulation of gene expression through histone modifications underlies cell homeostasis and differentiation. Kdm4d and Kdm4dl exhibited a high degree of similarity and demethylated H3K9me3. However, the physiological functions of these proteins remain unclear. In this study, we generated Kdm4dl mutant mice and found that Kdm4dl was dispensable for mouse development. However, through the generation of Kdm4d mutant mice, we unexpectedly found that Kdm4d mutant male mice were subfertile because of impaired sperm motility. The absence of Kdm4d was associated with an altered distribution of H3K9me3 in round spermatids, suggesting that the Kdm4d-mediated adjustment of H3K9me3 levels is required to generate motile sperm. Further analysis revealed that the absence of Kdm4d did not affect the functionality of sperm nuclei in generating offspring. As KDM4D is specifically expressed in the human testes, our results suggest that KDM4D expression may be a risk factor for human infertility.</p>\",\"PeriodicalId\":16942,\"journal\":{\"name\":\"Journal of Reproduction and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2024-039\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2024-039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过组蛋白修饰调节基因表达是细胞平衡和分化的基础。Kdm4d 和 Kdm4dl 表现出高度的相似性,并能使 H3K9me3 去甲基化。然而,这些蛋白的生理功能仍不清楚。在这项研究中,我们产生了 Kdm4dl 突变小鼠,并发现 Kdm4dl 在小鼠发育过程中是不可或缺的。然而,通过产生 Kdm4d 突变小鼠,我们意外地发现 Kdm4d 突变雄性小鼠由于精子活力受损而不能生育。Kdm4d的缺失与圆形精子中H3K9me3的分布改变有关,这表明Kdm4d介导的H3K9me3水平调整是产生运动精子的必要条件。进一步的分析表明,Kdm4d的缺失不会影响精子细胞核产生后代的功能。由于 KDM4D 在人类睾丸中特异性表达,我们的研究结果表明 KDM4D 的表达可能是导致人类不育的一个危险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kdm4d mutant mice show impaired sperm motility and subfertility.

Regulation of gene expression through histone modifications underlies cell homeostasis and differentiation. Kdm4d and Kdm4dl exhibited a high degree of similarity and demethylated H3K9me3. However, the physiological functions of these proteins remain unclear. In this study, we generated Kdm4dl mutant mice and found that Kdm4dl was dispensable for mouse development. However, through the generation of Kdm4d mutant mice, we unexpectedly found that Kdm4d mutant male mice were subfertile because of impaired sperm motility. The absence of Kdm4d was associated with an altered distribution of H3K9me3 in round spermatids, suggesting that the Kdm4d-mediated adjustment of H3K9me3 levels is required to generate motile sperm. Further analysis revealed that the absence of Kdm4d did not affect the functionality of sperm nuclei in generating offspring. As KDM4D is specifically expressed in the human testes, our results suggest that KDM4D expression may be a risk factor for human infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reproduction and Development
Journal of Reproduction and Development 生物-奶制品与动物科学
CiteScore
3.70
自引率
11.10%
发文量
52
审稿时长
2 months
期刊介绍: Journal of Reproduction and Development (JRD) is the official journal of the Society for Reproduction and Development, published bimonthly, and welcomes original articles. JRD provides free full-text access of all the published articles on the web. The functions of the journal are managed by Editorial Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are peer-reviewed critically by two or more reviewers. Acceptance is based on scientific content and presentation of the materials. The Editors select reviewers and correspond with authors. Final decisions about acceptance or rejection of manuscripts are made by the Editor-in-Chief and Co-Editor-in-Chief.
期刊最新文献
MiR-145-5p regulates granulosa cell proliferation by targeting the SET gene in KGN cells. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system. Preovulatory follicular dynamics and ovulatory events following the use of GnRH 84 h after medroxyprogesterone acetate sponge removal in postpartum buffaloes. Central δ/κ opioid receptor signaling pathways mediate chronic and/or acute suckling-induced LH suppression in rats during late lactation. Three-dimensional cell culture using CD9-positive cells isolated from marginal cell layer of intermediate lobe of rats sustains in vivo-like primary niche environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1