Jianyang Shi, Yunxia Yang, Ting Zhang, Kun Liang, Linqing Guo, Ruijie Deng, Kai Liu, Yao Ren
{"title":"多重分析重组烟草中的主要香味成分及其关键物质在加热过程中的转移行为。","authors":"Jianyang Shi, Yunxia Yang, Ting Zhang, Kun Liang, Linqing Guo, Ruijie Deng, Kai Liu, Yao Ren","doi":"10.1002/jssc.202400250","DOIUrl":null,"url":null,"abstract":"<p>Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 14","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple analyses of main flavor components in reconstituted tobacco and transfer behavior of their key substances during heating\",\"authors\":\"Jianyang Shi, Yunxia Yang, Ting Zhang, Kun Liang, Linqing Guo, Ruijie Deng, Kai Liu, Yao Ren\",\"doi\":\"10.1002/jssc.202400250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.</p>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 14\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400250\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multiple analyses of main flavor components in reconstituted tobacco and transfer behavior of their key substances during heating
Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.