利用非靶向液相色谱-质谱联用仪和气相色谱-质谱联用仪对香草叶、节间和气生根的代谢组进行综合表征。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Phytochemical Analysis Pub Date : 2024-07-21 DOI:10.1002/pca.3414
Falco Beer, Christoph H Weinert, Johannes Wellmann, Silke Hillebrand, Jakob Peter Ley, Sebastian T Soukup, Sabine E Kulling
{"title":"利用非靶向液相色谱-质谱联用仪和气相色谱-质谱联用仪对香草叶、节间和气生根的代谢组进行综合表征。","authors":"Falco Beer, Christoph H Weinert, Johannes Wellmann, Silke Hillebrand, Jakob Peter Ley, Sebastian T Soukup, Sabine E Kulling","doi":"10.1002/pca.3414","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V. planifolia, and no LC-MS or GC-MS metabolomics studies with respect to leaves have been performed.</p><p><strong>Objective: </strong>The aim of the study was to comprehensively characterize the metabolome of different organs (leaves, internodes, and aerial roots) of V. planifolia.</p><p><strong>Material and methods: </strong>Characterization of the metabolome was achieved using two complementary platforms (GC × GC-MS, LC-QToF-MS), and metabolite identification was based on a comparison with in-house databases or curated external spectral libraries.</p><p><strong>Results: </strong>In total, 127 metabolites could be identified with high certainty (confidence level 1 or 2) including sugars, amino acids, fatty acids, organic acids, and amines/amides but also secondary metabolites such as vanillin-related metabolites, flavonoids, and terpenoids. Ninty-eight metabolites showed significantly different intensities between the plant organs. Most strikingly, aglycons of flavonoids and vanillin-related metabolites were elevated in aerial roots, whereas its O-glycoside forms tended to be higher in leaves and/or internodes. This suggests that the more bioactive aglycones may accumulate where preferably needed, e.g. for defense against pathogens.</p><p><strong>Conclusion: </strong>The results derived from the study substantially expand the knowledge regarding the vanilla metabolome forming a valuable basis for more targeted investigations in future studies, e.g. towards an optimization of vanilla plant cultivation.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive metabolome characterization of leaves, internodes, and aerial roots of Vanilla planifolia by untargeted LC-MS and GC × GC-MS.\",\"authors\":\"Falco Beer, Christoph H Weinert, Johannes Wellmann, Silke Hillebrand, Jakob Peter Ley, Sebastian T Soukup, Sabine E Kulling\",\"doi\":\"10.1002/pca.3414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V. planifolia, and no LC-MS or GC-MS metabolomics studies with respect to leaves have been performed.</p><p><strong>Objective: </strong>The aim of the study was to comprehensively characterize the metabolome of different organs (leaves, internodes, and aerial roots) of V. planifolia.</p><p><strong>Material and methods: </strong>Characterization of the metabolome was achieved using two complementary platforms (GC × GC-MS, LC-QToF-MS), and metabolite identification was based on a comparison with in-house databases or curated external spectral libraries.</p><p><strong>Results: </strong>In total, 127 metabolites could be identified with high certainty (confidence level 1 or 2) including sugars, amino acids, fatty acids, organic acids, and amines/amides but also secondary metabolites such as vanillin-related metabolites, flavonoids, and terpenoids. Ninty-eight metabolites showed significantly different intensities between the plant organs. Most strikingly, aglycons of flavonoids and vanillin-related metabolites were elevated in aerial roots, whereas its O-glycoside forms tended to be higher in leaves and/or internodes. This suggests that the more bioactive aglycones may accumulate where preferably needed, e.g. for defense against pathogens.</p><p><strong>Conclusion: </strong>The results derived from the study substantially expand the knowledge regarding the vanilla metabolome forming a valuable basis for more targeted investigations in future studies, e.g. towards an optimization of vanilla plant cultivation.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3414\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3414","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

简介非靶向代谢组学是一种强大的工具,它提供了系统了解代谢物水平定量变化的策略,尤其是在结合不同代谢组学平台时。香草是世界上最受欢迎的香料之一,源自兰花香草的荚果。然而,只有少数研究调查了香荚兰的代谢组,而且还没有针对叶片进行 LC-MS 或 GC-MS 代谢组学研究:该研究旨在全面描述 V. planifolia 不同器官(叶片、节间和气生根)的代谢组特征:使用两个互补平台(GC × GC-MS、LC-QToF-MS)对代谢组进行表征,代谢物的鉴定基于与内部数据库或外部光谱库的比较:结果:总共有 127 种代谢物可以非常确定地鉴定出来(置信度为 1 或 2),包括糖类、氨基酸、脂肪酸、有机酸、胺/酰胺以及次生代谢物,如香兰素相关代谢物、黄酮类化合物和萜类化合物。植物器官之间有 98 种代谢物的强度存在明显差异。最明显的是,黄酮类化合物和香兰素相关代谢物的苷元在气生根中含量较高,而其 O-糖苷形式在叶片和/或节间中含量较高。这表明,生物活性更强的苷元可能积聚在更需要的地方,例如用于抵御病原体:这项研究的结果大大扩展了人们对香草代谢组的了解,为今后开展更有针对性的研究奠定了宝贵的基础,例如优化香草植物的种植。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive metabolome characterization of leaves, internodes, and aerial roots of Vanilla planifolia by untargeted LC-MS and GC × GC-MS.

Introduction: Untargeted metabolomics is a powerful tool that provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites, especially when combining different metabolomic platforms. Vanilla is one of the world's most popular flavors originating from cured pods of the orchid Vanilla planifolia. However, only a few studies have investigated the metabolome of V. planifolia, and no LC-MS or GC-MS metabolomics studies with respect to leaves have been performed.

Objective: The aim of the study was to comprehensively characterize the metabolome of different organs (leaves, internodes, and aerial roots) of V. planifolia.

Material and methods: Characterization of the metabolome was achieved using two complementary platforms (GC × GC-MS, LC-QToF-MS), and metabolite identification was based on a comparison with in-house databases or curated external spectral libraries.

Results: In total, 127 metabolites could be identified with high certainty (confidence level 1 or 2) including sugars, amino acids, fatty acids, organic acids, and amines/amides but also secondary metabolites such as vanillin-related metabolites, flavonoids, and terpenoids. Ninty-eight metabolites showed significantly different intensities between the plant organs. Most strikingly, aglycons of flavonoids and vanillin-related metabolites were elevated in aerial roots, whereas its O-glycoside forms tended to be higher in leaves and/or internodes. This suggests that the more bioactive aglycones may accumulate where preferably needed, e.g. for defense against pathogens.

Conclusion: The results derived from the study substantially expand the knowledge regarding the vanilla metabolome forming a valuable basis for more targeted investigations in future studies, e.g. towards an optimization of vanilla plant cultivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
期刊最新文献
Rapid Identification of Medicinal Polygonatum Species and Predictive of Polysaccharides Using ATR-FTIR Spectroscopy Combined With Multivariate Analysis. Investigation of Rheological Properties of Molten Materials for Dripping Pills Based on Imaging Monitoring. Nondestructive rapid identification of wild Cordyceps sinensis with portable instrument. Spectrum-effect relationship between HPLC fingerprints and antioxidant activity of Qi-Fu-Yin based on multiple statistical correlation analysis. Untargeted metabolomics, optimization of microwave-assisted extraction using Box-Behnken design and evaluation of antioxidant, and antidiabetic activities of sugarcane bagasse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1