Maksym Sharma, Miranda Kirby, Aaron Fenster, David G McCormack, Grace Parraga
{"title":"机器学习和磁共振图像纹理分析可预测患有和未患有慢性阻塞性肺病的戒烟者肺功能的加速衰退。","authors":"Maksym Sharma, Miranda Kirby, Aaron Fenster, David G McCormack, Grace Parraga","doi":"10.1117/1.JMI.11.4.046001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Our objective was to train machine-learning algorithms on hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> ) across 3 years.</p><p><strong>Approach: </strong>Hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis.</p><p><strong>Results: </strong>We evaluated 88 ex-smoker participants with <math><mrow><mn>31</mn> <mo>±</mo> <mn>7</mn></mrow> </math> months follow-up data, 57 of whom (22 females/35 males, <math><mrow><mn>70</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) had negligible changes in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> and 31 participants (7 females/24 males, <math><mrow><mn>68</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) with worsening <math> <mrow> <msub><mrow><mi>FEV</mi></mrow> <mrow><mn>1</mn></mrow> </msub> <mo>≥</mo> <mn>60</mn> <mtext> </mtext> <mi>mL</mi> <mo>/</mo> <mtext>year</mtext></mrow> </math> . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone.</p><p><strong>Conclusion: </strong>For the first time, we have employed hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> with 82% accuracy.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"046001"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning and magnetic resonance image texture analysis predicts accelerated lung function decline in ex-smokers with and without chronic obstructive pulmonary disease.\",\"authors\":\"Maksym Sharma, Miranda Kirby, Aaron Fenster, David G McCormack, Grace Parraga\",\"doi\":\"10.1117/1.JMI.11.4.046001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Our objective was to train machine-learning algorithms on hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> ) across 3 years.</p><p><strong>Approach: </strong>Hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis.</p><p><strong>Results: </strong>We evaluated 88 ex-smoker participants with <math><mrow><mn>31</mn> <mo>±</mo> <mn>7</mn></mrow> </math> months follow-up data, 57 of whom (22 females/35 males, <math><mrow><mn>70</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) had negligible changes in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> and 31 participants (7 females/24 males, <math><mrow><mn>68</mn> <mo>±</mo> <mn>9</mn></mrow> </math> years) with worsening <math> <mrow> <msub><mrow><mi>FEV</mi></mrow> <mrow><mn>1</mn></mrow> </msub> <mo>≥</mo> <mn>60</mn> <mtext> </mtext> <mi>mL</mi> <mo>/</mo> <mtext>year</mtext></mrow> </math> . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone.</p><p><strong>Conclusion: </strong>For the first time, we have employed hyperpolarized <math> <mrow> <mmultiscripts><mrow><mi>He</mi></mrow> <mprescripts></mprescripts> <none></none> <mrow><mn>3</mn></mrow> </mmultiscripts> </mrow> </math> MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in <math> <mrow><msub><mi>FEV</mi> <mn>1</mn></msub> </mrow> </math> with 82% accuracy.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 4\",\"pages\":\"046001\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.4.046001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.046001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Machine learning and magnetic resonance image texture analysis predicts accelerated lung function decline in ex-smokers with and without chronic obstructive pulmonary disease.
Purpose: Our objective was to train machine-learning algorithms on hyperpolarized magnetic resonance imaging (MRI) datasets to generate models of accelerated lung function decline in participants with and without chronic-obstructive-pulmonary-disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learning, and multivariate modeling could be combined to predict clinically-relevant changes in forced expiratory volume in 1 s ( ) across 3 years.
Approach: Hyperpolarized MRI was acquired using a coronal Cartesian fast gradient recalled echo sequence with a partial echo and segmented using a k-means clustering algorithm. A maximum entropy mask was used to generate a region-of-interest for texture feature extraction using a custom-developed algorithm and the PyRadiomics platform. The principal component and Boruta analyses were used for feature selection. Ensemble-based and single machine-learning classifiers were evaluated using area-under-the-receiver-operator-curve and sensitivity-specificity analysis.
Results: We evaluated 88 ex-smoker participants with months follow-up data, 57 of whom (22 females/35 males, years) had negligible changes in and 31 participants (7 females/24 males, years) with worsening . In addition, 3/88 ex-smokers reported a change in smoking status. We generated machine-learning models to predict decline using demographics, spirometry, and texture features, with the later yielding the highest classification accuracy of 81%. The combined model (trained on all available measurements) achieved the overall best classification accuracy of 82%; however, it was not significantly different from the model trained on MRI texture features alone.
Conclusion: For the first time, we have employed hyperpolarized MRI ventilation texture features and machine-learning to identify ex-smokers with accelerated decline in with 82% accuracy.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.