优化神经介入手术:栓塞线圈检测和自动准直以减少剂量的算法。

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-07-01 Epub Date: 2024-07-17 DOI:10.1117/1.JMI.11.4.044003
Arpitha Ravi, Philipp Bernhardt, Mathis Hoffmann, Richard Obler, Cuong Nguyen, Andreas Berting, René Chapot, Andreas Maier
{"title":"优化神经介入手术:栓塞线圈检测和自动准直以减少剂量的算法。","authors":"Arpitha Ravi, Philipp Bernhardt, Mathis Hoffmann, Richard Obler, Cuong Nguyen, Andreas Berting, René Chapot, Andreas Maier","doi":"10.1117/1.JMI.11.4.044003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose.</p><p><strong>Methods: </strong>Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison.</p><p><strong>Results: </strong>We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians.</p><p><strong>Conclusion: </strong>To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044003"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing neurointerventional procedures: an algorithm for embolization coil detection and automated collimation to enable dose reduction.\",\"authors\":\"Arpitha Ravi, Philipp Bernhardt, Mathis Hoffmann, Richard Obler, Cuong Nguyen, Andreas Berting, René Chapot, Andreas Maier\",\"doi\":\"10.1117/1.JMI.11.4.044003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose.</p><p><strong>Methods: </strong>Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison.</p><p><strong>Results: </strong>We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians.</p><p><strong>Conclusion: </strong>To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 4\",\"pages\":\"044003\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.4.044003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.044003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:监测放射介入过程中的辐射剂量和时间参数至关重要,尤其是在神经介入手术中,如使用栓塞线圈治疗动脉瘤。本文介绍的算法可检测医学图像中是否存在这些栓塞线圈。它建立了一个边界框,作为自动准直的参考,主要目的是通过积极优化图像质量,同时最大限度地减少患者剂量,提高神经介入手术的效率和安全性:我们的研究评估了两种不同的方法。第一种方法涉及深度学习,采用以 ResNet-50 FPN 为骨干的 Faster R-CNN 模型和 RetinaNet 模型。第二种方法采用经典的 Blob 检测方法,作为比较基准:我们进行了五倍交叉验证,在验证数据上,我们的最高性能模型在所有褶皱中的平均 mAP@75 为 0.84,在独立测试数据上的平均 mAP@75 为 0.94。由于我们使用的是放大的边界框,因此不需要在地面实况和预测之间实现 100% 的重叠。为了突出我们算法在现实世界中的应用,我们进行了一次模拟,模拟的线圈是由合金丝构成的,有效地展示了自动准直的实现。这显著降低了剂量面积乘积,通过最大限度地减少散射辐射,降低了患者和医务人员的随机风险。此外,我们的算法还有助于避免 X 射线血管造影图像在窄准直过程中出现极亮或极暗的情况,最终简化了医生的准直过程:据我们所知,这是成功检测栓塞线圈方法的首次尝试,展示了将检测结果集成到 X 射线血管造影系统中的扩展应用。我们提出的方法具有更广泛的应用潜力,可扩展到检测介入手术中使用的其他医疗物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing neurointerventional procedures: an algorithm for embolization coil detection and automated collimation to enable dose reduction.

Purpose: Monitoring radiation dose and time parameters during radiological interventions is crucial, especially in neurointerventional procedures, such as aneurysm treatment with embolization coils. The algorithm presented detects the presence of these embolization coils in medical images. It establishes a bounding box as a reference for automated collimation, with the primary objective being to enhance the efficiency and safety of neurointerventional procedures by actively optimizing image quality while minimizing patient dose.

Methods: Two distinct methodologies are evaluated in our study. The first involves deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a backbone and a RetinaNet model. The second method utilizes a classical blob detection approach, serving as a benchmark for comparison.

Results: We performed a fivefold cross-validation, and our top-performing model achieved mean mAP@75 of 0.84 across all folds on validation data and mean mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding box, achieving 100% overlap between ground truth and prediction is not necessary. To highlight the real-world applications of our algorithm, we conducted a simulation featuring a coil constructed from an alloy wire, effectively showcasing the implementation of automatic collimation. This resulted in a notable reduction in the dose area product, signifying the reduction of stochastic risks for both patients and medical staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding extreme brightness or darkness in X-ray angiography images during narrow collimation, ultimately streamlining the collimation process for physicians.

Conclusion: To our knowledge, this marks the initial attempt at an approach successfully detecting embolization coils, showcasing the extended applications of integrating detection results into the X-ray angiography system. The method we present has the potential for broader application, allowing its extension to detect other medical objects utilized in interventional procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1