Hang Su , Zhiquan Song , Hua Li , Meng Xu , Zhenhan Li
{"title":"用于聚变设备的新型脉冲超导磁体储能电源拓扑研究与经济性评估","authors":"Hang Su , Zhiquan Song , Hua Li , Meng Xu , Zhenhan Li","doi":"10.1016/j.fusengdes.2024.114600","DOIUrl":null,"url":null,"abstract":"<div><p>Large capacity fusion devices power supply poses a significant challenge to the stability of power grid, as it can lead to power outages and jeopardize the safety of fusion devices. And traditional distribution methods result in a significant waste of resources. This paper proposes novel topologies with integrated energy storage. In these topologies, high-amplitude pulsed power is supplied by the energy storage devices, while low-amplitude stable power is obtained from the grid. This decouples the pulsed power from power grid, and significantly reducing its impact. Moreover, it can reduce the design capacity of distribution equipment and lowers investment costs. To optimize the deployment of the energy storage device, a hybrid topology is proposed, which further reducing the cost of the novel power supply. Additionally, a cost model for the fusion power supply is developed and validated using simulation data from ITER. Through the case study shows that the HEPS topology saves more than 10 % of the investment cost and about 60 % of the annual operating cost compared to the traditional converter topology.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and economic evaluation on novel pulse superconducting magnet power supply topology with energy storage for fusion devices\",\"authors\":\"Hang Su , Zhiquan Song , Hua Li , Meng Xu , Zhenhan Li\",\"doi\":\"10.1016/j.fusengdes.2024.114600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large capacity fusion devices power supply poses a significant challenge to the stability of power grid, as it can lead to power outages and jeopardize the safety of fusion devices. And traditional distribution methods result in a significant waste of resources. This paper proposes novel topologies with integrated energy storage. In these topologies, high-amplitude pulsed power is supplied by the energy storage devices, while low-amplitude stable power is obtained from the grid. This decouples the pulsed power from power grid, and significantly reducing its impact. Moreover, it can reduce the design capacity of distribution equipment and lowers investment costs. To optimize the deployment of the energy storage device, a hybrid topology is proposed, which further reducing the cost of the novel power supply. Additionally, a cost model for the fusion power supply is developed and validated using simulation data from ITER. Through the case study shows that the HEPS topology saves more than 10 % of the investment cost and about 60 % of the annual operating cost compared to the traditional converter topology.</p></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004514\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004514","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research and economic evaluation on novel pulse superconducting magnet power supply topology with energy storage for fusion devices
Large capacity fusion devices power supply poses a significant challenge to the stability of power grid, as it can lead to power outages and jeopardize the safety of fusion devices. And traditional distribution methods result in a significant waste of resources. This paper proposes novel topologies with integrated energy storage. In these topologies, high-amplitude pulsed power is supplied by the energy storage devices, while low-amplitude stable power is obtained from the grid. This decouples the pulsed power from power grid, and significantly reducing its impact. Moreover, it can reduce the design capacity of distribution equipment and lowers investment costs. To optimize the deployment of the energy storage device, a hybrid topology is proposed, which further reducing the cost of the novel power supply. Additionally, a cost model for the fusion power supply is developed and validated using simulation data from ITER. Through the case study shows that the HEPS topology saves more than 10 % of the investment cost and about 60 % of the annual operating cost compared to the traditional converter topology.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.