利用多点地质统计学对矿脉型金矿床进行地质建模

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-07-17 DOI:10.1016/j.acags.2024.100177
Aida Zhexenbayeva , Nasser Madani , Philippe Renard , Julien Straubhaar
{"title":"利用多点地质统计学对矿脉型金矿床进行地质建模","authors":"Aida Zhexenbayeva ,&nbsp;Nasser Madani ,&nbsp;Philippe Renard ,&nbsp;Julien Straubhaar","doi":"10.1016/j.acags.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100177"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000247/pdfft?md5=6267aeb1f34a82ff3e55ae08fe0d7c7d&pid=1-s2.0-S2590197424000247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using multiple-point geostatistics for geomodeling of a vein-type gold deposit\",\"authors\":\"Aida Zhexenbayeva ,&nbsp;Nasser Madani ,&nbsp;Philippe Renard ,&nbsp;Julien Straubhaar\",\"doi\":\"10.1016/j.acags.2024.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000247/pdfft?md5=6267aeb1f34a82ff3e55ae08fe0d7c7d&pid=1-s2.0-S2590197424000247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

矿产资源的地质统计级联建模在脉型金矿床中具有挑战性。这些含金矿脉形状狭窄,范围较远,加上钻孔数据较少,会使建模过程复杂化,导致使用两点地质统计算法不切实际。相反,多点地质统计技术是一种合适的替代方法。然而,实施多点地质统计技术最具挑战性的部分是使用合适的训练数据集或训练图像(TI)。在本文中,我们建议使用径向基函数算法建立训练图像,并使用多点统计(MPS)方法之一的 DeeSse 算法对金矿床中的两条长距离矿脉进行建模。结果表明,在缺乏条件数据的情况下,DeeSse 能比复数高斯模拟技术更好地复制长距离矿脉特征。几个验证过程(如将模拟结果与解释性地质块模型进行比较以及复制地质比例)都证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using multiple-point geostatistics for geomodeling of a vein-type gold deposit

Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1