TCohPrompt:关系提取中以任务一致性提示为导向的微调

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-07-22 DOI:10.1007/s40747-024-01563-4
Jun Long, Zhuoying Yin, Chao Liu, Wenti Huang
{"title":"TCohPrompt:关系提取中以任务一致性提示为导向的微调","authors":"Jun Long, Zhuoying Yin, Chao Liu, Wenti Huang","doi":"10.1007/s40747-024-01563-4","DOIUrl":null,"url":null,"abstract":"<p>Prompt-tuning has emerged as a promising approach for improving the performance of classification tasks by converting them into masked language modeling problems through the insertion of text templates. Despite its considerable success, applying this approach to relation extraction is challenging. Predicting the relation, often expressed as a specific word or phrase between two entities, usually requires creating mappings from these terms to an existing lexicon and introducing extra learnable parameters. This can lead to a decrease in coherence between the pre-training task and fine-tuning. To address this issue, we propose a novel method for prompt-tuning in relation extraction, aiming to enhance the coherence between fine-tuning and pre-training tasks. Specifically, we avoid the need for a suitable relation word by converting the relation into relational semantic keywords, which are representative phrases that encapsulate the essence of the relation. Moreover, we employ a composite loss function that optimizes the model at both token and relation levels. Our approach incorporates the masked language modeling (MLM) loss and the entity pair constraint loss for predicted tokens. For relation level optimization, we use both the cross-entropy loss and TransE. Extensive experimental results on four datasets demonstrate that our method significantly improves performance in relation extraction tasks. The results show an average improvement of approximately 1.6 points in <i>F</i>1 metrics compared to the current state-of-the-art model. Codes are released at https://github.com/12138yx/TCohPrompt.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCohPrompt: task-coherent prompt-oriented fine-tuning for relation extraction\",\"authors\":\"Jun Long, Zhuoying Yin, Chao Liu, Wenti Huang\",\"doi\":\"10.1007/s40747-024-01563-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prompt-tuning has emerged as a promising approach for improving the performance of classification tasks by converting them into masked language modeling problems through the insertion of text templates. Despite its considerable success, applying this approach to relation extraction is challenging. Predicting the relation, often expressed as a specific word or phrase between two entities, usually requires creating mappings from these terms to an existing lexicon and introducing extra learnable parameters. This can lead to a decrease in coherence between the pre-training task and fine-tuning. To address this issue, we propose a novel method for prompt-tuning in relation extraction, aiming to enhance the coherence between fine-tuning and pre-training tasks. Specifically, we avoid the need for a suitable relation word by converting the relation into relational semantic keywords, which are representative phrases that encapsulate the essence of the relation. Moreover, we employ a composite loss function that optimizes the model at both token and relation levels. Our approach incorporates the masked language modeling (MLM) loss and the entity pair constraint loss for predicted tokens. For relation level optimization, we use both the cross-entropy loss and TransE. Extensive experimental results on four datasets demonstrate that our method significantly improves performance in relation extraction tasks. The results show an average improvement of approximately 1.6 points in <i>F</i>1 metrics compared to the current state-of-the-art model. Codes are released at https://github.com/12138yx/TCohPrompt.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01563-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01563-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过插入文本模板将分类任务转换为掩码语言建模问题,提示调整(Prompt-tuning)已成为提高分类任务性能的一种有前途的方法。尽管这种方法取得了巨大成功,但将其应用于关系提取仍具有挑战性。预测关系(通常表现为两个实体之间的特定单词或短语)通常需要将这些术语与现有词库建立映射关系,并引入额外的可学习参数。这会导致预训练任务和微调之间的一致性降低。为了解决这个问题,我们提出了一种在关系提取中进行及时调整的新方法,旨在增强微调和预训练任务之间的一致性。具体来说,我们通过将关系转换为关系语义关键词(即能概括关系本质的代表性短语),避免了对合适关系词的需求。此外,我们还采用了复合损失函数,在标记和关系两个层面上优化模型。我们的方法结合了屏蔽语言建模(MLM)损失和实体对约束损失,用于预测标记。在关系层面的优化中,我们使用了交叉熵损失和 TransE。在四个数据集上的广泛实验结果表明,我们的方法显著提高了关系提取任务的性能。结果表明,与目前最先进的模型相比,F1 指标平均提高了约 1.6 分。代码发布于 https://github.com/12138yx/TCohPrompt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCohPrompt: task-coherent prompt-oriented fine-tuning for relation extraction

Prompt-tuning has emerged as a promising approach for improving the performance of classification tasks by converting them into masked language modeling problems through the insertion of text templates. Despite its considerable success, applying this approach to relation extraction is challenging. Predicting the relation, often expressed as a specific word or phrase between two entities, usually requires creating mappings from these terms to an existing lexicon and introducing extra learnable parameters. This can lead to a decrease in coherence between the pre-training task and fine-tuning. To address this issue, we propose a novel method for prompt-tuning in relation extraction, aiming to enhance the coherence between fine-tuning and pre-training tasks. Specifically, we avoid the need for a suitable relation word by converting the relation into relational semantic keywords, which are representative phrases that encapsulate the essence of the relation. Moreover, we employ a composite loss function that optimizes the model at both token and relation levels. Our approach incorporates the masked language modeling (MLM) loss and the entity pair constraint loss for predicted tokens. For relation level optimization, we use both the cross-entropy loss and TransE. Extensive experimental results on four datasets demonstrate that our method significantly improves performance in relation extraction tasks. The results show an average improvement of approximately 1.6 points in F1 metrics compared to the current state-of-the-art model. Codes are released at https://github.com/12138yx/TCohPrompt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
A spherical Z-number multi-attribute group decision making model based on the prospect theory and GLDS method Integration of a novel 3D chaotic map with ELSS and novel cross-border pixel exchange strategy for secure image communication A collision-free transition path planning method for placement robots in complex environments SAGB: self-attention with gate and BiGRU network for intrusion detection Enhanced EDAS methodology for multiple-criteria group decision analysis utilizing linguistic q-rung orthopair fuzzy hamacher aggregation operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1