DSO:融合动态和静态信息的 GPU 能效优化器

Qiang Wang, Laiyi Li, Weile Luo, Yijia Zhang, Bingqiang Wang
{"title":"DSO:融合动态和静态信息的 GPU 能效优化器","authors":"Qiang Wang, Laiyi Li, Weile Luo, Yijia Zhang, Bingqiang Wang","doi":"arxiv-2407.13096","DOIUrl":null,"url":null,"abstract":"Increased reliance on graphics processing units (GPUs) for high-intensity\ncomputing tasks raises challenges regarding energy consumption. To address this\nissue, dynamic voltage and frequency scaling (DVFS) has emerged as a promising\ntechnique for conserving energy while maintaining the quality of service (QoS)\nof GPU applications. However, existing solutions using DVFS are hindered by\ninefficiency or inaccuracy as they depend either on dynamic or static\ninformation respectively, which prevents them from being adopted to practical\npower management schemes. To this end, we propose a novel energy efficiency\noptimizer, called DSO, to explore a light weight solution that leverages both\ndynamic and static information to model and optimize the GPU energy efficiency.\nDSO firstly proposes a novel theoretical energy efficiency model which reflects\nthe DVFS roofline phenomenon and considers the tradeoff between performance and\nenergy. Then it applies machine learning techniques to predict the parameters\nof the above model with both GPU kernel runtime metrics and static code\nfeatures. Experiments on modern DVFS-enabled GPUs indicate that DSO can enhance\nenergy efficiency by 19% whilst maintaining performance within a 5% loss\nmargin.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSO: A GPU Energy Efficiency Optimizer by Fusing Dynamic and Static Information\",\"authors\":\"Qiang Wang, Laiyi Li, Weile Luo, Yijia Zhang, Bingqiang Wang\",\"doi\":\"arxiv-2407.13096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased reliance on graphics processing units (GPUs) for high-intensity\\ncomputing tasks raises challenges regarding energy consumption. To address this\\nissue, dynamic voltage and frequency scaling (DVFS) has emerged as a promising\\ntechnique for conserving energy while maintaining the quality of service (QoS)\\nof GPU applications. However, existing solutions using DVFS are hindered by\\ninefficiency or inaccuracy as they depend either on dynamic or static\\ninformation respectively, which prevents them from being adopted to practical\\npower management schemes. To this end, we propose a novel energy efficiency\\noptimizer, called DSO, to explore a light weight solution that leverages both\\ndynamic and static information to model and optimize the GPU energy efficiency.\\nDSO firstly proposes a novel theoretical energy efficiency model which reflects\\nthe DVFS roofline phenomenon and considers the tradeoff between performance and\\nenergy. Then it applies machine learning techniques to predict the parameters\\nof the above model with both GPU kernel runtime metrics and static code\\nfeatures. Experiments on modern DVFS-enabled GPUs indicate that DSO can enhance\\nenergy efficiency by 19% whilst maintaining performance within a 5% loss\\nmargin.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高强度计算任务越来越依赖图形处理器(GPU),这给能耗带来了挑战。为解决这一问题,动态电压和频率缩放(DVFS)已成为在保持 GPU 应用服务(QoS)质量的同时节约能源的一种有前途的技术。然而,现有的 DVFS 解决方案分别依赖于动态或静态信息,因此存在效率低或不准确的问题,无法将其应用到实际的电源管理方案中。为此,我们提出了一种名为 DSO 的新型能效优化器,以探索一种利用动态和静态信息来建模和优化 GPU 能效的轻量级解决方案。DSO 首先提出了一种新型理论能效模型,该模型反映了 DVFS 顶线现象,并考虑了性能和能耗之间的权衡。DSO 首先提出了一个新颖的理论能效模型,该模型反映了 DVFS 屋顶线现象,并考虑了性能和能耗之间的权衡。然后,它应用机器学习技术,通过 GPU 内核运行时指标和静态代码特征来预测上述模型的参数。在支持 DVFS 的现代 GPU 上进行的实验表明,DSO 可以将能效提高 19%,同时将性能保持在 5% 的损耗范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSO: A GPU Energy Efficiency Optimizer by Fusing Dynamic and Static Information
Increased reliance on graphics processing units (GPUs) for high-intensity computing tasks raises challenges regarding energy consumption. To address this issue, dynamic voltage and frequency scaling (DVFS) has emerged as a promising technique for conserving energy while maintaining the quality of service (QoS) of GPU applications. However, existing solutions using DVFS are hindered by inefficiency or inaccuracy as they depend either on dynamic or static information respectively, which prevents them from being adopted to practical power management schemes. To this end, we propose a novel energy efficiency optimizer, called DSO, to explore a light weight solution that leverages both dynamic and static information to model and optimize the GPU energy efficiency. DSO firstly proposes a novel theoretical energy efficiency model which reflects the DVFS roofline phenomenon and considers the tradeoff between performance and energy. Then it applies machine learning techniques to predict the parameters of the above model with both GPU kernel runtime metrics and static code features. Experiments on modern DVFS-enabled GPUs indicate that DSO can enhance energy efficiency by 19% whilst maintaining performance within a 5% loss margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1