国家队足球的成功因素:对 2020 年欧洲杯的分析

IF 1.1 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Quantitative Analysis in Sports Pub Date : 2024-07-20 DOI:10.1515/jqas-2023-0026
Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle
{"title":"国家队足球的成功因素:对 2020 年欧洲杯的分析","authors":"Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle","doi":"10.1515/jqas-2023-0026","DOIUrl":null,"url":null,"abstract":"Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <jats:italic>J. Roy. Stat. Soc. B</jats:italic> 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"37 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Success factors in national team football: an analysis of the UEFA EURO 2020\",\"authors\":\"Vincent Renner, Konstantin Görgen, Alexander Woll, Hagen Wäsche, Melanie Schienle\",\"doi\":\"10.1515/jqas-2023-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <jats:italic>J. Roy. Stat. Soc. B</jats:italic> 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2023-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2023-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

确定足球运动的成功因素具有体育和经济意义。然而,尽管球队和赛事很受欢迎,但针对国家队及其赛事的研究却很少见。因此,我们分析了 2020 年欧洲杯的数据,并与 2016 年的上届赛事进行比较。为了减轻多重共线性和样本量较小带来的挑战,并确定相关变量,我们采用了 "LASSO 交叉拟合稳定性选择 "算法。这种方法涉及数据的迭代分割,通过 "最小绝对收缩和选择算子"(LASSO)模型选择变量(Tibshirani, R. (1996)。Regression shrinkage and selection via the lasso.J. Roy.J. Roy.Soc. B 58: 267-288),而系数则是在另一半观测值上估算的。随后,我们检查重复样本中每个变量的选择频率和系数估计的稳定性,以确定相关因素。这样,我们就能将市值比等普遍有效的成功因素与场上变量(其重要性取决于赛事)(如拦截成功率)区分开来。由于后者与球队的战术相关,我们得出结论,观察到的相关性与特定赛事中相关打法的结果相关。我们还展示了这些打法在不同赛事中对成功的影响变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Success factors in national team football: an analysis of the UEFA EURO 2020
Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quantitative Analysis in Sports
Journal of Quantitative Analysis in Sports SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.00
自引率
12.50%
发文量
15
期刊介绍: The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.
期刊最新文献
Improving the aggregation and evaluation of NBA mock drafts A basketball paradox: exploring NBA team defensive efficiency in a positionless game Success factors in national team football: an analysis of the UEFA EURO 2020 An empirical Bayes approach for estimating skill models for professional darts players A comprehensive survey of the home advantage in American football
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1