{"title":"智能反射面辅助上行链路卫星-地面混合网络中的速率分裂多重接入性能分析","authors":"Mehmet Can, Ibrahim Altunbas","doi":"10.1002/dac.5917","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we investigate the performance of a rate-splitting multiple access (RSMA)-based intelligent reflecting surface (IRS)-assisted uplink hybrid satellite-terrestrial network. We consider three different scenarios based on the channel phase knowledge at the IRS, namely, the ideal, partial, and blind cases. In the ideal case, the IRS has full knowledge of both the user-to-IRS and IRS-to-satellite channel phase information. In the partial case, the IRS has only the user-to-IRS channel phase information. Last, in the blind case, the IRS has no any knowledge of the phase information. We assume that the user-to-IRS channel follows Rician fading, and the IRS-to-satellite channel follows the shadowed Rician fading. The closed-form tight outage probability expressions for all three scenarios are derived. The accuracy of the derivations is confirmed by simulation results. In addition, it is shown that the performance of the RSMA-based system is superior to those of the conventional non-orthogonal and orthogonal multiple access-based systems with a small number of reflecting elements at high target rates.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of rate-splitting multiple access in intelligent reflecting surface-assisted uplink hybrid satellite-terrestrial networks\",\"authors\":\"Mehmet Can, Ibrahim Altunbas\",\"doi\":\"10.1002/dac.5917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we investigate the performance of a rate-splitting multiple access (RSMA)-based intelligent reflecting surface (IRS)-assisted uplink hybrid satellite-terrestrial network. We consider three different scenarios based on the channel phase knowledge at the IRS, namely, the ideal, partial, and blind cases. In the ideal case, the IRS has full knowledge of both the user-to-IRS and IRS-to-satellite channel phase information. In the partial case, the IRS has only the user-to-IRS channel phase information. Last, in the blind case, the IRS has no any knowledge of the phase information. We assume that the user-to-IRS channel follows Rician fading, and the IRS-to-satellite channel follows the shadowed Rician fading. The closed-form tight outage probability expressions for all three scenarios are derived. The accuracy of the derivations is confirmed by simulation results. In addition, it is shown that the performance of the RSMA-based system is superior to those of the conventional non-orthogonal and orthogonal multiple access-based systems with a small number of reflecting elements at high target rates.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5917\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5917","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance analysis of rate-splitting multiple access in intelligent reflecting surface-assisted uplink hybrid satellite-terrestrial networks
In this paper, we investigate the performance of a rate-splitting multiple access (RSMA)-based intelligent reflecting surface (IRS)-assisted uplink hybrid satellite-terrestrial network. We consider three different scenarios based on the channel phase knowledge at the IRS, namely, the ideal, partial, and blind cases. In the ideal case, the IRS has full knowledge of both the user-to-IRS and IRS-to-satellite channel phase information. In the partial case, the IRS has only the user-to-IRS channel phase information. Last, in the blind case, the IRS has no any knowledge of the phase information. We assume that the user-to-IRS channel follows Rician fading, and the IRS-to-satellite channel follows the shadowed Rician fading. The closed-form tight outage probability expressions for all three scenarios are derived. The accuracy of the derivations is confirmed by simulation results. In addition, it is shown that the performance of the RSMA-based system is superior to those of the conventional non-orthogonal and orthogonal multiple access-based systems with a small number of reflecting elements at high target rates.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.