{"title":"从分布角度看风险厌恶马尔可夫决策过程","authors":"Ziteng Cheng, Sebastian Jaimungal","doi":"10.1287/moor.2023.0211","DOIUrl":null,"url":null,"abstract":"By adopting a distributional viewpoint on law-invariant convex risk measures, we construct dynamic risk measures (DRMs) at the distributional level. We then apply these DRMs to investigate Markov decision processes, incorporating latent costs, random actions, and weakly continuous transition kernels. Furthermore, the proposed DRMs allow risk aversion to change dynamically. Under mild assumptions, we derive a dynamic programming principle and show the existence of an optimal policy in both finite and infinite time horizons. Moreover, we provide a sufficient condition for the optimality of deterministic actions. For illustration, we conclude the paper with examples from optimal liquidation with limit order books and autonomous driving.Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada [Grants RGPAS-2018-522715 and RGPIN-2018-05705].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"42 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk-Averse Markov Decision Processes Through a Distributional Lens\",\"authors\":\"Ziteng Cheng, Sebastian Jaimungal\",\"doi\":\"10.1287/moor.2023.0211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By adopting a distributional viewpoint on law-invariant convex risk measures, we construct dynamic risk measures (DRMs) at the distributional level. We then apply these DRMs to investigate Markov decision processes, incorporating latent costs, random actions, and weakly continuous transition kernels. Furthermore, the proposed DRMs allow risk aversion to change dynamically. Under mild assumptions, we derive a dynamic programming principle and show the existence of an optimal policy in both finite and infinite time horizons. Moreover, we provide a sufficient condition for the optimality of deterministic actions. For illustration, we conclude the paper with examples from optimal liquidation with limit order books and autonomous driving.Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada [Grants RGPAS-2018-522715 and RGPIN-2018-05705].\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0211\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Risk-Averse Markov Decision Processes Through a Distributional Lens
By adopting a distributional viewpoint on law-invariant convex risk measures, we construct dynamic risk measures (DRMs) at the distributional level. We then apply these DRMs to investigate Markov decision processes, incorporating latent costs, random actions, and weakly continuous transition kernels. Furthermore, the proposed DRMs allow risk aversion to change dynamically. Under mild assumptions, we derive a dynamic programming principle and show the existence of an optimal policy in both finite and infinite time horizons. Moreover, we provide a sufficient condition for the optimality of deterministic actions. For illustration, we conclude the paper with examples from optimal liquidation with limit order books and autonomous driving.Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada [Grants RGPAS-2018-522715 and RGPIN-2018-05705].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.