基于混合变速的直升机/涡轮轴发动机系统的优化控制

Yong Wang, Jie Song, Shancheng Li, Haibo Zhang
{"title":"基于混合变速的直升机/涡轮轴发动机系统的优化控制","authors":"Yong Wang, Jie Song, Shancheng Li, Haibo Zhang","doi":"10.1177/09544100241262554","DOIUrl":null,"url":null,"abstract":"In order to address the limitation of fixed-ratio transmission (FRT), which compromises the attainment of both optimal main rotor speed and optimal power turbine speed, an optimal speed control method based on hybrid variable speed (HVS) is proposed. Firstly, based on the integrated performance calculation model of helicopter/turboshaft engine system, the distribution factors of variable speed are applied, and the integrated optimization method of optimal speed is proposed based on the minimum engine fuel flow. Subsequently, an online estimation technique employing a high-order filter is devised and engineered to achieve superior cascaded control of turboshaft engines. Finally, a novel real-time optimal speed control method based on hybrid variable speed is proposed. The simulation results under different operation conditions demonstrate that regardless of whether it is FRT or HVS, the optimal main rotor speed increases with forward velocity. In the case of HVS, turboshaft engine degradations have a significant impact on the optimal power turbine speed rather than optimal main rotor speed. Adopting an estimation method based on high-order filtering for gas turbine rotational acceleration proves more advantageous in mitigating high-frequency oscillation and continuous saltation of estimated values. Moreover, in comparison with the optimal speed control method of FRT, HVS-based approach enables simultaneous attainment of the optimal main rotor speed and power turbine speed, thereby enhancing the overall efficiency of the integrated helicopter/turboshaft engine system and significantly decreasing engine fuel consumption by over 2%. Consequently, there has been a remarkable enhancement in the overall performance of the integrated helicopter/turboshaft engine system.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"391 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control for helicopter/turboshaft engine system based on hybrid variable speed\",\"authors\":\"Yong Wang, Jie Song, Shancheng Li, Haibo Zhang\",\"doi\":\"10.1177/09544100241262554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the limitation of fixed-ratio transmission (FRT), which compromises the attainment of both optimal main rotor speed and optimal power turbine speed, an optimal speed control method based on hybrid variable speed (HVS) is proposed. Firstly, based on the integrated performance calculation model of helicopter/turboshaft engine system, the distribution factors of variable speed are applied, and the integrated optimization method of optimal speed is proposed based on the minimum engine fuel flow. Subsequently, an online estimation technique employing a high-order filter is devised and engineered to achieve superior cascaded control of turboshaft engines. Finally, a novel real-time optimal speed control method based on hybrid variable speed is proposed. The simulation results under different operation conditions demonstrate that regardless of whether it is FRT or HVS, the optimal main rotor speed increases with forward velocity. In the case of HVS, turboshaft engine degradations have a significant impact on the optimal power turbine speed rather than optimal main rotor speed. Adopting an estimation method based on high-order filtering for gas turbine rotational acceleration proves more advantageous in mitigating high-frequency oscillation and continuous saltation of estimated values. Moreover, in comparison with the optimal speed control method of FRT, HVS-based approach enables simultaneous attainment of the optimal main rotor speed and power turbine speed, thereby enhancing the overall efficiency of the integrated helicopter/turboshaft engine system and significantly decreasing engine fuel consumption by over 2%. Consequently, there has been a remarkable enhancement in the overall performance of the integrated helicopter/turboshaft engine system.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"391 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241262554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241262554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

针对固定比传动装置(FRT)无法同时实现主旋翼最优转速和动力涡轮最优转速的局限性,提出了一种基于混合变速(HVS)的最优转速控制方法。首先,基于直升机/涡轴发动机系统的综合性能计算模型,应用变速分配系数,提出了基于最小发动机燃油流量的最优转速综合优化方法。随后,设计并开发了一种采用高阶滤波器的在线估计技术,以实现对涡轮轴发动机的卓越级联控制。最后,提出了一种基于混合变速的新型实时最优转速控制方法。不同运行条件下的仿真结果表明,无论是 FRT 还是 HVS,最佳主转子速度都随前进速度的增加而增加。在 HVS 的情况下,涡轮轴发动机退化对最佳动力涡轮转速的影响很大,而不是对最佳主转子转速的影响。事实证明,采用基于高阶滤波的燃气轮机旋转加速度估算方法更有利于减少高频振荡和估算值的连续盐化。此外,与 FRT 的最佳速度控制方法相比,基于 HVS 的方法可同时获得最佳主旋翼速度和动力涡轮速度,从而提高直升机/涡轮轴发动机集成系统的整体效率,并将发动机油耗显著降低 2% 以上。因此,直升机/涡轮轴发动机集成系统的整体性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal control for helicopter/turboshaft engine system based on hybrid variable speed
In order to address the limitation of fixed-ratio transmission (FRT), which compromises the attainment of both optimal main rotor speed and optimal power turbine speed, an optimal speed control method based on hybrid variable speed (HVS) is proposed. Firstly, based on the integrated performance calculation model of helicopter/turboshaft engine system, the distribution factors of variable speed are applied, and the integrated optimization method of optimal speed is proposed based on the minimum engine fuel flow. Subsequently, an online estimation technique employing a high-order filter is devised and engineered to achieve superior cascaded control of turboshaft engines. Finally, a novel real-time optimal speed control method based on hybrid variable speed is proposed. The simulation results under different operation conditions demonstrate that regardless of whether it is FRT or HVS, the optimal main rotor speed increases with forward velocity. In the case of HVS, turboshaft engine degradations have a significant impact on the optimal power turbine speed rather than optimal main rotor speed. Adopting an estimation method based on high-order filtering for gas turbine rotational acceleration proves more advantageous in mitigating high-frequency oscillation and continuous saltation of estimated values. Moreover, in comparison with the optimal speed control method of FRT, HVS-based approach enables simultaneous attainment of the optimal main rotor speed and power turbine speed, thereby enhancing the overall efficiency of the integrated helicopter/turboshaft engine system and significantly decreasing engine fuel consumption by over 2%. Consequently, there has been a remarkable enhancement in the overall performance of the integrated helicopter/turboshaft engine system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1