Wei Guo, Qingyong Bian, Chengxiang Zhu, Ning Zhao, Chunling Zhu
{"title":"过冷大液滴尺寸分布对机翼结冰的影响:基于新型耦合欧拉方法的数值研究","authors":"Wei Guo, Qingyong Bian, Chengxiang Zhu, Ning Zhao, Chunling Zhu","doi":"10.1177/09544100241259068","DOIUrl":null,"url":null,"abstract":"Supercooled large droplets (SLDs) under natural icing conditions have the characteristics of easy deformation in motion and easy splashing on impact, and a bimodal droplet size distribution that has received less attention. The modified form of the Rosin-Rammler function was improved to achieve a more accurate nonlinear fitting of the SLD distribution curve. The droplet size distribution was divided into non-equipartition continuous multiple components. The drag source term of each component was coupled with the overall droplet size distribution, and the Eulerian equations of each component of SLDs were solved simultaneously. A new coupled Eulerian method for non-equipartition continuous multi-size droplets was proposed to simulate the impact characteristics of SLDs, and the SLD collection coefficients were validated. Effects of the ratio between the number of large and small droplet components and the number of all components on the simulation results were investigated to select a better combination based on stable convergence calculation steps and the calculation time. This new method was added to the multi-step icing numerical method, and the accuracy and robustness of the method in icing shape prediction were verified based on the freezing drizzle, median volume diameter < 40 μm (FZDZ, MVD < 40 μm) icing condition. Airfoil icing characteristics based on the bimodal and monomodal distribution were compared, and the icing shapes at the leading edge were similar. Still, the upper and lower limits of the icing shapes with the bimodal distribution were nearer to the trailing edge and the ice layer was thicker there.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"46 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercooled large droplet size distribution effects on airfoil icing: A numerical investigation based on a new coupled Eulerian method\",\"authors\":\"Wei Guo, Qingyong Bian, Chengxiang Zhu, Ning Zhao, Chunling Zhu\",\"doi\":\"10.1177/09544100241259068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercooled large droplets (SLDs) under natural icing conditions have the characteristics of easy deformation in motion and easy splashing on impact, and a bimodal droplet size distribution that has received less attention. The modified form of the Rosin-Rammler function was improved to achieve a more accurate nonlinear fitting of the SLD distribution curve. The droplet size distribution was divided into non-equipartition continuous multiple components. The drag source term of each component was coupled with the overall droplet size distribution, and the Eulerian equations of each component of SLDs were solved simultaneously. A new coupled Eulerian method for non-equipartition continuous multi-size droplets was proposed to simulate the impact characteristics of SLDs, and the SLD collection coefficients were validated. Effects of the ratio between the number of large and small droplet components and the number of all components on the simulation results were investigated to select a better combination based on stable convergence calculation steps and the calculation time. This new method was added to the multi-step icing numerical method, and the accuracy and robustness of the method in icing shape prediction were verified based on the freezing drizzle, median volume diameter < 40 μm (FZDZ, MVD < 40 μm) icing condition. Airfoil icing characteristics based on the bimodal and monomodal distribution were compared, and the icing shapes at the leading edge were similar. Still, the upper and lower limits of the icing shapes with the bimodal distribution were nearer to the trailing edge and the ice layer was thicker there.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241259068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241259068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Supercooled large droplet size distribution effects on airfoil icing: A numerical investigation based on a new coupled Eulerian method
Supercooled large droplets (SLDs) under natural icing conditions have the characteristics of easy deformation in motion and easy splashing on impact, and a bimodal droplet size distribution that has received less attention. The modified form of the Rosin-Rammler function was improved to achieve a more accurate nonlinear fitting of the SLD distribution curve. The droplet size distribution was divided into non-equipartition continuous multiple components. The drag source term of each component was coupled with the overall droplet size distribution, and the Eulerian equations of each component of SLDs were solved simultaneously. A new coupled Eulerian method for non-equipartition continuous multi-size droplets was proposed to simulate the impact characteristics of SLDs, and the SLD collection coefficients were validated. Effects of the ratio between the number of large and small droplet components and the number of all components on the simulation results were investigated to select a better combination based on stable convergence calculation steps and the calculation time. This new method was added to the multi-step icing numerical method, and the accuracy and robustness of the method in icing shape prediction were verified based on the freezing drizzle, median volume diameter < 40 μm (FZDZ, MVD < 40 μm) icing condition. Airfoil icing characteristics based on the bimodal and monomodal distribution were compared, and the icing shapes at the leading edge were similar. Still, the upper and lower limits of the icing shapes with the bimodal distribution were nearer to the trailing edge and the ice layer was thicker there.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).