双流体界面漂浮物的稳定性

IF 0.6 4区 教育学 Q4 EDUCATION, SCIENTIFIC DISCIPLINES European Journal of Physics Pub Date : 2024-07-16 DOI:10.1088/1361-6404/ad5ca8
Daniel M Anderson, Patrick R Bishop, Mark Brant, Gabriela Castaneda Guzman, Evelyn Sander and Gina Thomas
{"title":"双流体界面漂浮物的稳定性","authors":"Daniel M Anderson, Patrick R Bishop, Mark Brant, Gabriela Castaneda Guzman, Evelyn Sander and Gina Thomas","doi":"10.1088/1361-6404/ad5ca8","DOIUrl":null,"url":null,"abstract":"We explore the stability of floating objects at a two-fluid interface through mathematical modeling and experimentation. Our models are based on standard ideas of center of gravity, center of buoyancy, and Archimedes’ Principle extended to the two-fluid scenario. We investigate floating shapes with uniform, two-dimensional cross sections and identify analytically and/or computationally a potential energy landscape that helps identify stable and unstable floating orientations. We compare our analyses and computations to experiments on floating objects designed and created through 3D printing. Additionally, the paper includes open problems for further study.","PeriodicalId":50480,"journal":{"name":"European Journal of Physics","volume":"69 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of floating objects at a two-fluid interface\",\"authors\":\"Daniel M Anderson, Patrick R Bishop, Mark Brant, Gabriela Castaneda Guzman, Evelyn Sander and Gina Thomas\",\"doi\":\"10.1088/1361-6404/ad5ca8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the stability of floating objects at a two-fluid interface through mathematical modeling and experimentation. Our models are based on standard ideas of center of gravity, center of buoyancy, and Archimedes’ Principle extended to the two-fluid scenario. We investigate floating shapes with uniform, two-dimensional cross sections and identify analytically and/or computationally a potential energy landscape that helps identify stable and unstable floating orientations. We compare our analyses and computations to experiments on floating objects designed and created through 3D printing. Additionally, the paper includes open problems for further study.\",\"PeriodicalId\":50480,\"journal\":{\"name\":\"European Journal of Physics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6404/ad5ca8\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6404/ad5ca8","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

我们通过数学建模和实验来探索漂浮物在双流体界面上的稳定性。我们的模型基于重心、浮力中心和阿基米德原理的标准思想,并将其扩展到双流体情景中。我们研究了具有均匀二维横截面的漂浮形状,并通过分析和/或计算确定了有助于确定稳定和不稳定漂浮方向的势能景观。我们将分析和计算结果与通过 3D 打印设计和创建的漂浮物实验进行了比较。此外,本文还包括有待进一步研究的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of floating objects at a two-fluid interface
We explore the stability of floating objects at a two-fluid interface through mathematical modeling and experimentation. Our models are based on standard ideas of center of gravity, center of buoyancy, and Archimedes’ Principle extended to the two-fluid scenario. We investigate floating shapes with uniform, two-dimensional cross sections and identify analytically and/or computationally a potential energy landscape that helps identify stable and unstable floating orientations. We compare our analyses and computations to experiments on floating objects designed and created through 3D printing. Additionally, the paper includes open problems for further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Physics
European Journal of Physics 物理-物理:综合
CiteScore
1.70
自引率
28.60%
发文量
128
审稿时长
3-8 weeks
期刊介绍: European Journal of Physics is a journal of the European Physical Society and its primary mission is to assist in maintaining and improving the standard of taught physics in universities and other institutes of higher education. Authors submitting articles must indicate the usefulness of their material to physics education and make clear the level of readership (undergraduate or graduate) for which the article is intended. Submissions that omit this information or which, in the publisher''s opinion, do not contribute to the above mission will not be considered for publication. To this end, we welcome articles that provide original insights and aim to enhance learning in one or more areas of physics. They should normally include at least one of the following: Explanations of how contemporary research can inform the understanding of physics at university level: for example, a survey of a research field at a level accessible to students, explaining how it illustrates some general principles. Original insights into the derivation of results. These should be of some general interest, consisting of more than corrections to textbooks. Descriptions of novel laboratory exercises illustrating new techniques of general interest. Those based on relatively inexpensive equipment are especially welcome. Articles of a scholarly or reflective nature that are aimed to be of interest to, and at a level appropriate for, physics students or recent graduates. Descriptions of successful and original student projects, experimental, theoretical or computational. Discussions of the history, philosophy and epistemology of physics, at a level accessible to physics students and teachers. Reports of new developments in physics curricula and the techniques for teaching physics. Physics Education Research reports: articles that provide original experimental and/or theoretical research contributions that directly relate to the teaching and learning of university-level physics.
期刊最新文献
Surprises in the theory of elasticity: pairwise atomic interactions, central forces, and Cauchy relations The water bottle flipping experiment: a quantitative comparison between experiments and numerical simulations An inexpensive way to introduce students to gamma spectroscopy Flow of water out of a funnel Investigative photometry experiments on planar extended-light sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1