Marko Raseta, Jacinta van de Grint, Shannon Dealy, Jiang Chang, Jan Hoeijmakers, Joris Pothof
{"title":"DNA 累积损伤导致转录丢失的数学模型","authors":"Marko Raseta, Jacinta van de Grint, Shannon Dealy, Jiang Chang, Jan Hoeijmakers, Joris Pothof","doi":"10.1101/2024.07.15.603615","DOIUrl":null,"url":null,"abstract":"We offer a simple mathematical model of gene transcription loss due to accumulated DNA damage in time based on widely agreed biological axioms. Closed form formulae characterizing the distribution of the underlying stochastic processes representing the transcription loss upon specified number of DNA damages are obtained. Moreover, the asymptotic behavior of the stochastic process was analyzed. Finally, the distribution of the first hitting time of transcription loss to specified biologically relevant levels was studied both analytically and computationally on mice data.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical model of transcription loss due to accumulated DNA damage\",\"authors\":\"Marko Raseta, Jacinta van de Grint, Shannon Dealy, Jiang Chang, Jan Hoeijmakers, Joris Pothof\",\"doi\":\"10.1101/2024.07.15.603615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We offer a simple mathematical model of gene transcription loss due to accumulated DNA damage in time based on widely agreed biological axioms. Closed form formulae characterizing the distribution of the underlying stochastic processes representing the transcription loss upon specified number of DNA damages are obtained. Moreover, the asymptotic behavior of the stochastic process was analyzed. Finally, the distribution of the first hitting time of transcription loss to specified biologically relevant levels was studied both analytically and computationally on mice data.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.15.603615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.15.603615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们以广泛认同的生物学公理为基础,提供了一个基因转录损失的简单数学模型。我们得到了代表特定数量 DNA 损伤时转录损失的基本随机过程分布的封闭式公式。此外,还分析了随机过程的渐近行为。最后,对小鼠数据进行了分析和计算,研究了转录损失首次达到指定生物相关水平的时间分布。
Mathematical model of transcription loss due to accumulated DNA damage
We offer a simple mathematical model of gene transcription loss due to accumulated DNA damage in time based on widely agreed biological axioms. Closed form formulae characterizing the distribution of the underlying stochastic processes representing the transcription loss upon specified number of DNA damages are obtained. Moreover, the asymptotic behavior of the stochastic process was analyzed. Finally, the distribution of the first hitting time of transcription loss to specified biologically relevant levels was studied both analytically and computationally on mice data.