通过 TiN-ZnS 复合材料提高超级电容器的能量密度,揭示其作为电极的前景

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-07-19 DOI:10.1063/5.0221353
Muhammad Arif, Junaid Riaz, Amina Bibi, Hongran Yang, Ting Zhu
{"title":"通过 TiN-ZnS 复合材料提高超级电容器的能量密度,揭示其作为电极的前景","authors":"Muhammad Arif, Junaid Riaz, Amina Bibi, Hongran Yang, Ting Zhu","doi":"10.1063/5.0221353","DOIUrl":null,"url":null,"abstract":"This work describes a low-cost wet chemical synthesis technique to produce TiN–ZnS nanocomposites suitable for high energy density supercapacitors. Ti, Zn, N, and S elements in the synthesized materials were verified using comprehensive morphological, structural, and surface chemical investigations. Due to improved electric conductivity and electroactivity, this TiN–ZnS nanocomposite electrode exhibited excellent capacitance and charge transport kinetics, outperforming individual TiN and ZnS electrodes in electrochemical performance. The TiN–ZnS || MnO2 electrode configuration in an asymmetric supercapacitor system exhibited a high energy density of 74.13 Wh kg−1 and an exceptional power density of 7648 W kg−1 at a current density of 9 A g−1. The TiN–ZnS electrode also showed a remarkable retention rate of 96.8% even after 10 000 cycles. This work highlights the potential of the TiN–ZnS composite as a high-performance electrode for supercapacitors.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing supercapacitor energy density by TiN–ZnS composites unveiled as a promising electrode\",\"authors\":\"Muhammad Arif, Junaid Riaz, Amina Bibi, Hongran Yang, Ting Zhu\",\"doi\":\"10.1063/5.0221353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a low-cost wet chemical synthesis technique to produce TiN–ZnS nanocomposites suitable for high energy density supercapacitors. Ti, Zn, N, and S elements in the synthesized materials were verified using comprehensive morphological, structural, and surface chemical investigations. Due to improved electric conductivity and electroactivity, this TiN–ZnS nanocomposite electrode exhibited excellent capacitance and charge transport kinetics, outperforming individual TiN and ZnS electrodes in electrochemical performance. The TiN–ZnS || MnO2 electrode configuration in an asymmetric supercapacitor system exhibited a high energy density of 74.13 Wh kg−1 and an exceptional power density of 7648 W kg−1 at a current density of 9 A g−1. The TiN–ZnS electrode also showed a remarkable retention rate of 96.8% even after 10 000 cycles. This work highlights the potential of the TiN–ZnS composite as a high-performance electrode for supercapacitors.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0221353\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0221353","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种低成本湿化学合成技术,用于生产适用于高能量密度超级电容器的 TiN-ZnS 纳米复合材料。通过全面的形态、结构和表面化学研究,验证了合成材料中的钛、锌、N 和 S 元素。由于电导率和电活性的提高,这种 TiN-ZnS 纳米复合电极表现出优异的电容和电荷传输动力学性能,在电化学性能方面优于单独的 TiN 和 ZnS 电极。非对称超级电容器系统中的 TiN-ZnS || MnO2 电极配置在电流密度为 9 A g-1 时表现出 74.13 Wh kg-1 的高能量密度和 7648 W kg-1 的超高功率密度。此外,TiN-ZnS 电极在经过 10 000 次循环后仍显示出 96.8% 的出色保持率。这项工作凸显了 TiN-ZnS 复合材料作为超级电容器高性能电极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing supercapacitor energy density by TiN–ZnS composites unveiled as a promising electrode
This work describes a low-cost wet chemical synthesis technique to produce TiN–ZnS nanocomposites suitable for high energy density supercapacitors. Ti, Zn, N, and S elements in the synthesized materials were verified using comprehensive morphological, structural, and surface chemical investigations. Due to improved electric conductivity and electroactivity, this TiN–ZnS nanocomposite electrode exhibited excellent capacitance and charge transport kinetics, outperforming individual TiN and ZnS electrodes in electrochemical performance. The TiN–ZnS || MnO2 electrode configuration in an asymmetric supercapacitor system exhibited a high energy density of 74.13 Wh kg−1 and an exceptional power density of 7648 W kg−1 at a current density of 9 A g−1. The TiN–ZnS electrode also showed a remarkable retention rate of 96.8% even after 10 000 cycles. This work highlights the potential of the TiN–ZnS composite as a high-performance electrode for supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1