基于代数可观测 PINN,给定部分观测值估算流行病学参数

Mizuka Komatsu
{"title":"基于代数可观测 PINN,给定部分观测值估算流行病学参数","authors":"Mizuka Komatsu","doi":"arxiv-2407.12598","DOIUrl":null,"url":null,"abstract":"In this study, we considered the problem of estimating epidemiological\nparameters based on physics-informed neural networks (PINNs). In practice, not\nall trajectory data corresponding to the population estimated by epidemic\nmodels can be obtained, and some observed trajectories are noisy. Learning\nPINNs to estimate unknown epidemiological parameters using such partial\nobservations is challenging. Accordingly, we introduce the concept of algebraic\nobservability into PINNs. The validity of the proposed PINN, named as an\nalgebraically observable PINNs, in terms of estimation parameters and\nprediction of unobserved variables, is demonstrated through numerical\nexperiments.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimate Epidemiological Parameters given Partial Observations based on Algebraically Observable PINNs\",\"authors\":\"Mizuka Komatsu\",\"doi\":\"arxiv-2407.12598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we considered the problem of estimating epidemiological\\nparameters based on physics-informed neural networks (PINNs). In practice, not\\nall trajectory data corresponding to the population estimated by epidemic\\nmodels can be obtained, and some observed trajectories are noisy. Learning\\nPINNs to estimate unknown epidemiological parameters using such partial\\nobservations is challenging. Accordingly, we introduce the concept of algebraic\\nobservability into PINNs. The validity of the proposed PINN, named as an\\nalgebraically observable PINNs, in terms of estimation parameters and\\nprediction of unobserved variables, is demonstrated through numerical\\nexperiments.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了基于物理信息神经网络(PINN)估计流行病学参数的问题。在实践中,并不是所有与流行病模型估计的人群相对应的轨迹数据都能获得,有些观测到的轨迹是有噪声的。利用这些部分观测数据学习 PINN 来估计未知的流行病学参数具有挑战性。因此,我们在 PINN 中引入了代数可观测性的概念。我们通过数值实验证明了所提出的 PINN 在估计参数和预测未观测变量方面的有效性,并将其命名为代数可观测 PINN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimate Epidemiological Parameters given Partial Observations based on Algebraically Observable PINNs
In this study, we considered the problem of estimating epidemiological parameters based on physics-informed neural networks (PINNs). In practice, not all trajectory data corresponding to the population estimated by epidemic models can be obtained, and some observed trajectories are noisy. Learning PINNs to estimate unknown epidemiological parameters using such partial observations is challenging. Accordingly, we introduce the concept of algebraic observability into PINNs. The validity of the proposed PINN, named as an algebraically observable PINNs, in terms of estimation parameters and prediction of unobserved variables, is demonstrated through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1