{"title":"具有新颖投注功能的概念漂移 ICM 集合","authors":"Charalambos Eliades, Harris Papadopoulos","doi":"10.1007/s10994-024-06593-0","DOIUrl":null,"url":null,"abstract":"<p>This study builds upon our previous work by introducing a refined Inductive Conformal Martingale (ICM) approach for addressing Concept Drift. Specifically, we enhance our previously proposed CAUTIOUS betting function to incorporate multiple density estimators for improving detection ability. We also combine this betting function with two base estimators that have not been previously utilized within the ICM framework: the Interpolated Histogram and Nearest Neighbor Density Estimators. We assess these extensions using both a single ICM and an ensemble of ICMs. For the latter, we conduct a comprehensive experimental investigation into the influence of the ensemble size on prediction accuracy and the number of available predictions. Our experimental results on four benchmark datasets demonstrate that the proposed approach surpasses our previous methodology in terms of performance while matching or in many cases exceeding that of three contemporary state-of-the-art techniques.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"160 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICM ensemble with novel betting functions for concept drift\",\"authors\":\"Charalambos Eliades, Harris Papadopoulos\",\"doi\":\"10.1007/s10994-024-06593-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study builds upon our previous work by introducing a refined Inductive Conformal Martingale (ICM) approach for addressing Concept Drift. Specifically, we enhance our previously proposed CAUTIOUS betting function to incorporate multiple density estimators for improving detection ability. We also combine this betting function with two base estimators that have not been previously utilized within the ICM framework: the Interpolated Histogram and Nearest Neighbor Density Estimators. We assess these extensions using both a single ICM and an ensemble of ICMs. For the latter, we conduct a comprehensive experimental investigation into the influence of the ensemble size on prediction accuracy and the number of available predictions. Our experimental results on four benchmark datasets demonstrate that the proposed approach surpasses our previous methodology in terms of performance while matching or in many cases exceeding that of three contemporary state-of-the-art techniques.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06593-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06593-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ICM ensemble with novel betting functions for concept drift
This study builds upon our previous work by introducing a refined Inductive Conformal Martingale (ICM) approach for addressing Concept Drift. Specifically, we enhance our previously proposed CAUTIOUS betting function to incorporate multiple density estimators for improving detection ability. We also combine this betting function with two base estimators that have not been previously utilized within the ICM framework: the Interpolated Histogram and Nearest Neighbor Density Estimators. We assess these extensions using both a single ICM and an ensemble of ICMs. For the latter, we conduct a comprehensive experimental investigation into the influence of the ensemble size on prediction accuracy and the number of available predictions. Our experimental results on four benchmark datasets demonstrate that the proposed approach surpasses our previous methodology in terms of performance while matching or in many cases exceeding that of three contemporary state-of-the-art techniques.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.