采用超细边缘富集电催化剂的 500 mW cm-2 水下 Zn-H2O2 电池

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-07-17 DOI:10.1007/s40843-024-2990-1
Meng Zhou  (, ), Kui Fu  (, ), Yihai Xing  (, ), Jianling Liu  (, ), Fancheng Meng  (, ), Xiangfeng Wei  (, ), Jiehua Liu  (, )
{"title":"采用超细边缘富集电催化剂的 500 mW cm-2 水下 Zn-H2O2 电池","authors":"Meng Zhou \n (,&nbsp;),&nbsp;Kui Fu \n (,&nbsp;),&nbsp;Yihai Xing \n (,&nbsp;),&nbsp;Jianling Liu \n (,&nbsp;),&nbsp;Fancheng Meng \n (,&nbsp;),&nbsp;Xiangfeng Wei \n (,&nbsp;),&nbsp;Jiehua Liu \n (,&nbsp;)","doi":"10.1007/s40843-024-2990-1","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous metal-H<sub>2</sub>O<sub>2</sub> cells are emerging as power batteries because of their large theoretical energy densities and multiple application scenarios, especially in underwater environments. However, the peak power densities are less than 300 mW cm<sup>−2</sup> for most reported metal-H<sub>2</sub>O<sub>2</sub> cells based on Mg/Al or their alloys due to the self-corrosion. Herein, we reported a Zn-H<sub>2</sub>O<sub>2</sub> cell with ultrafine bean-pod-like ZnCo/N-doped electrocatalysts that were synthesized <i>via</i> multifunctional single-cell-chain biomass. The electrocatalyst provides abundant active sites on the crinkly interface and offers a shortened pathway for electron/ion transfer due to the desired root-like carbon nanotube (CNT) arrays. Therefore, the optimized electrocatalyst exhibited outstanding oxygen reduction reaction (ORR) activity, with high <i>E</i><sub>1/2</sub> (0.90 V) and <i>E</i><sub>onset</sub> (1.01 V) values. More importantly, Zn-H<sub>2</sub>O<sub>2</sub> batteries achieve a record-breaking peak-power density of 510 mW cm<sup>−2</sup> and a high specific energy density of 953 Wh kg<sup>−1</sup>.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2908 - 2914"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"500-mW cm−2 underwater Zn-H2O2 batteries with ultrafine edge-enriched electrocatalysts\",\"authors\":\"Meng Zhou \\n (,&nbsp;),&nbsp;Kui Fu \\n (,&nbsp;),&nbsp;Yihai Xing \\n (,&nbsp;),&nbsp;Jianling Liu \\n (,&nbsp;),&nbsp;Fancheng Meng \\n (,&nbsp;),&nbsp;Xiangfeng Wei \\n (,&nbsp;),&nbsp;Jiehua Liu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-2990-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous metal-H<sub>2</sub>O<sub>2</sub> cells are emerging as power batteries because of their large theoretical energy densities and multiple application scenarios, especially in underwater environments. However, the peak power densities are less than 300 mW cm<sup>−2</sup> for most reported metal-H<sub>2</sub>O<sub>2</sub> cells based on Mg/Al or their alloys due to the self-corrosion. Herein, we reported a Zn-H<sub>2</sub>O<sub>2</sub> cell with ultrafine bean-pod-like ZnCo/N-doped electrocatalysts that were synthesized <i>via</i> multifunctional single-cell-chain biomass. The electrocatalyst provides abundant active sites on the crinkly interface and offers a shortened pathway for electron/ion transfer due to the desired root-like carbon nanotube (CNT) arrays. Therefore, the optimized electrocatalyst exhibited outstanding oxygen reduction reaction (ORR) activity, with high <i>E</i><sub>1/2</sub> (0.90 V) and <i>E</i><sub>onset</sub> (1.01 V) values. More importantly, Zn-H<sub>2</sub>O<sub>2</sub> batteries achieve a record-breaking peak-power density of 510 mW cm<sup>−2</sup> and a high specific energy density of 953 Wh kg<sup>−1</sup>.</p></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 9\",\"pages\":\"2908 - 2914\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-2990-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2990-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水基金属-H2O2 电池因其理论能量密度大、应用场景多(尤其是在水下环境中)而成为新兴的动力电池。然而,由于自腐蚀,大多数已报道的基于镁/铝或其合金的金属-H2O2 电池的峰值功率密度低于 300 mW cm-2。在此,我们报告了一种采用超细豆荚状 ZnCo/N 掺杂电催化剂的 Zn-H2O2 电池,该催化剂是通过多功能单细胞链生物质合成的。这种电催化剂在皱缩界面上提供了丰富的活性位点,并且由于采用了所需的根状碳纳米管(CNT)阵列,缩短了电子/离子转移的路径。因此,优化后的电催化剂表现出卓越的氧还原反应(ORR)活性,具有较高的 E1/2 值(0.90 V)和 Eonset 值(1.01 V)。更重要的是,Zn-H2O2 电池的峰值功率密度达到了破纪录的 510 mW cm-2,比能量密度高达 953 Wh kg-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
500-mW cm−2 underwater Zn-H2O2 batteries with ultrafine edge-enriched electrocatalysts

Aqueous metal-H2O2 cells are emerging as power batteries because of their large theoretical energy densities and multiple application scenarios, especially in underwater environments. However, the peak power densities are less than 300 mW cm−2 for most reported metal-H2O2 cells based on Mg/Al or their alloys due to the self-corrosion. Herein, we reported a Zn-H2O2 cell with ultrafine bean-pod-like ZnCo/N-doped electrocatalysts that were synthesized via multifunctional single-cell-chain biomass. The electrocatalyst provides abundant active sites on the crinkly interface and offers a shortened pathway for electron/ion transfer due to the desired root-like carbon nanotube (CNT) arrays. Therefore, the optimized electrocatalyst exhibited outstanding oxygen reduction reaction (ORR) activity, with high E1/2 (0.90 V) and Eonset (1.01 V) values. More importantly, Zn-H2O2 batteries achieve a record-breaking peak-power density of 510 mW cm−2 and a high specific energy density of 953 Wh kg−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging Promising graphdiyne-based nanomaterials for environmental pollutant control Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review Supramolecular glass: a new platform for ultralong phosphorescence Simultaneously achieving high sensitivity, low dark current and low detection limits in anti-perovskites towards X-ray detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1