利用平均熵和二值观测数据识别 FIR 系统的最佳数据篡改攻击策略

IF 3.9 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Adaptive Control and Signal Processing Pub Date : 2024-07-18 DOI:10.1002/acs.3877
Zhongwei Bai, Yan Liu, Yinghui Wang, Jin Guo
{"title":"利用平均熵和二值观测数据识别 FIR 系统的最佳数据篡改攻击策略","authors":"Zhongwei Bai,&nbsp;Yan Liu,&nbsp;Yinghui Wang,&nbsp;Jin Guo","doi":"10.1002/acs.3877","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the era of digitalization boom, cyber-physical system (CPS) has been widely used in several fields. However, malicious data tampering in communication networks may lead to degradation of the state estimation performance, which may affect the control decision and cause significant losses. In this paper, for the identification of finite impluse response (FIR) systems with binary-valued observations under data tampering attack, an optimal attack strategy based on the average entropy is designed from the perspective of the attacker. In the case of unknown parameters, the regression matrix is used to give the estimation method of the system parameters, the algorithmic flow of the data tampering attack for the implementation of the on-line attack is designed. Finally, the effectiveness of the algorithm and the reliability of the conclusions is verified through the examples.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 10","pages":"3329-3345"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal strategy of data tampering attacks for FIR system identification with average entropy and binary-valued observations\",\"authors\":\"Zhongwei Bai,&nbsp;Yan Liu,&nbsp;Yinghui Wang,&nbsp;Jin Guo\",\"doi\":\"10.1002/acs.3877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the era of digitalization boom, cyber-physical system (CPS) has been widely used in several fields. However, malicious data tampering in communication networks may lead to degradation of the state estimation performance, which may affect the control decision and cause significant losses. In this paper, for the identification of finite impluse response (FIR) systems with binary-valued observations under data tampering attack, an optimal attack strategy based on the average entropy is designed from the perspective of the attacker. In the case of unknown parameters, the regression matrix is used to give the estimation method of the system parameters, the algorithmic flow of the data tampering attack for the implementation of the on-line attack is designed. Finally, the effectiveness of the algorithm and the reliability of the conclusions is verified through the examples.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 10\",\"pages\":\"3329-3345\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3877\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3877","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在数字化蓬勃发展的时代,网络物理系统(CPS)已被广泛应用于多个领域。然而,通信网络中的恶意数据篡改可能会导致状态估计性能下降,从而影响控制决策并造成重大损失。本文针对数据篡改攻击下观测值为二值的有限隐含响应(FIR)系统的识别问题,从攻击者的角度出发,设计了一种基于平均熵的最优攻击策略。在参数未知的情况下,利用回归矩阵给出了系统参数的估计方法,设计了实现在线攻击的数据篡改攻击算法流程。最后,通过实例验证了算法的有效性和结论的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal strategy of data tampering attacks for FIR system identification with average entropy and binary-valued observations

In the era of digitalization boom, cyber-physical system (CPS) has been widely used in several fields. However, malicious data tampering in communication networks may lead to degradation of the state estimation performance, which may affect the control decision and cause significant losses. In this paper, for the identification of finite impluse response (FIR) systems with binary-valued observations under data tampering attack, an optimal attack strategy based on the average entropy is designed from the perspective of the attacker. In the case of unknown parameters, the regression matrix is used to give the estimation method of the system parameters, the algorithmic flow of the data tampering attack for the implementation of the on-line attack is designed. Finally, the effectiveness of the algorithm and the reliability of the conclusions is verified through the examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
163
审稿时长
5 months
期刊介绍: The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material. Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include: Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers Nonlinear, Robust and Intelligent Adaptive Controllers Linear and Nonlinear Multivariable System Identification and Estimation Identification of Linear Parameter Varying, Distributed and Hybrid Systems Multiple Model Adaptive Control Adaptive Signal processing Theory and Algorithms Adaptation in Multi-Agent Systems Condition Monitoring Systems Fault Detection and Isolation Methods Fault Detection and Isolation Methods Fault-Tolerant Control (system supervision and diagnosis) Learning Systems and Adaptive Modelling Real Time Algorithms for Adaptive Signal Processing and Control Adaptive Signal Processing and Control Applications Adaptive Cloud Architectures and Networking Adaptive Mechanisms for Internet of Things Adaptive Sliding Mode Control.
期刊最新文献
Issue Information Issue Information Anti Wind‐Up and Robust Data‐Driven Model‐Free Adaptive Control for MIMO Nonlinear Discrete‐Time Systems Separable Synchronous Gradient‐Based Iterative Algorithms for the Nonlinear ExpARX System Random Learning Leads to Faster Convergence in ‘Model‐Free’ ILC: With Application to MIMO Feedforward in Industrial Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1