Peter E. Doan, Alex Drena, Ajay Sharma, Brian M. Hoffman
{"title":"高旋锰(II) EPR 和ENDOR 的挑战与机遇","authors":"Peter E. Doan, Alex Drena, Ajay Sharma, Brian M. Hoffman","doi":"10.1007/s00723-024-01680-w","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy of three quite distinct high-spin Mn(II) systems and describe experimental techniques and methods of analysis that are useful in their study. We demonstrate that this S = 5/2 metal center provides useful orientation-selection through the Zero-Field Splitting (ZFS) tensor that enables determination of a <sup>13</sup>C hyperfine-coupling tensor with extremely small hyperfine interaction. We also demonstrate that Mims suppression effects can be used in concert with orientation-selection to edit complex <sup>[1,2]</sup>H ENDOR patterns that can be produced by even a ‘simple’ center with a single Mn(II). We develop a perturbation-based approach to understanding second-order shifts in Mn(II) ENDOR responses that occur in systems with intermediate ZFS values, and show that these shifts can be used to estimate the values of the ZFS tensors.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"969 - 986"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Challenges and Opportunities of High-Spin Mn(II) EPR and ENDOR\",\"authors\":\"Peter E. Doan, Alex Drena, Ajay Sharma, Brian M. Hoffman\",\"doi\":\"10.1007/s00723-024-01680-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We examine the electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy of three quite distinct high-spin Mn(II) systems and describe experimental techniques and methods of analysis that are useful in their study. We demonstrate that this S = 5/2 metal center provides useful orientation-selection through the Zero-Field Splitting (ZFS) tensor that enables determination of a <sup>13</sup>C hyperfine-coupling tensor with extremely small hyperfine interaction. We also demonstrate that Mims suppression effects can be used in concert with orientation-selection to edit complex <sup>[1,2]</sup>H ENDOR patterns that can be produced by even a ‘simple’ center with a single Mn(II). We develop a perturbation-based approach to understanding second-order shifts in Mn(II) ENDOR responses that occur in systems with intermediate ZFS values, and show that these shifts can be used to estimate the values of the ZFS tensors.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 9\",\"pages\":\"969 - 986\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01680-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01680-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
The Challenges and Opportunities of High-Spin Mn(II) EPR and ENDOR
We examine the electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy of three quite distinct high-spin Mn(II) systems and describe experimental techniques and methods of analysis that are useful in their study. We demonstrate that this S = 5/2 metal center provides useful orientation-selection through the Zero-Field Splitting (ZFS) tensor that enables determination of a 13C hyperfine-coupling tensor with extremely small hyperfine interaction. We also demonstrate that Mims suppression effects can be used in concert with orientation-selection to edit complex [1,2]H ENDOR patterns that can be produced by even a ‘simple’ center with a single Mn(II). We develop a perturbation-based approach to understanding second-order shifts in Mn(II) ENDOR responses that occur in systems with intermediate ZFS values, and show that these shifts can be used to estimate the values of the ZFS tensors.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.