Xingru Wang
(, ), Yang Zheng
(, ), Lirong Chen
(, ), Rui Ge
(, ), Chengyu Jiang
(, ), Gang Xu
(, ), Xiudi Xiao
(, )
{"title":"用于伪装和信息显示的多色 V2O5/TiO2 电致变色薄膜,切换速度快,使用寿命长","authors":"Xingru Wang \n (, ), Yang Zheng \n (, ), Lirong Chen \n (, ), Rui Ge \n (, ), Chengyu Jiang \n (, ), Gang Xu \n (, ), Xiudi Xiao \n (, )","doi":"10.1007/s40843-023-2837-x","DOIUrl":null,"url":null,"abstract":"<div><p>V<sub>2</sub>O<sub>5</sub>, which has multicolor and energy storage properties, is a promising electrochromic material for multifunctional electrochromic devices, but its practical application is limited by its poor lifespan and long switching time. In this work, high-performance V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films were fabricated by spraying a V<sub>2</sub>O<sub>5</sub> solution on <i>in situ</i>-grown TiO<sub>2</sub> nanorods. Due to the porous structure formed between the TiO<sub>2</sub> nanorods and the remarkable electron transfer performance of TiO<sub>2</sub>, the switching time of the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films decreased. Moreover, the strong adhesion between the TiO<sub>2</sub> nanorods and F-doped tin oxide (FTO) glass and the increased surface roughness of the substrates significantly improved the cycling stability of the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films. With a large transmittance modulation (47.8% at 668 nm), fast response speed (<i>τ</i><sub>c</sub> = 5.1 s, <i>τ</i><sub>b</sub> = 4.2 s), and long lifespan, V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films were used as electrodes for the electrochromic energy storage device (EESD), which switched in six colors through color overlay: dark orange, sandy yellow, green-yellow, yellow-green, dark green, and dark brown. Inspired by pixel displays, EESDs were designed by segmenting V<sub>2</sub>O<sub>5</sub> films to stagger the display of the electrochromic and ion storage layers, which presented 11 types of information based on different combinations of colors. This work provides inspiration for developing multifunctional electrochromic devices, especially for camouflage and information displays.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2807 - 2817"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicolor V2O5/TiO2 electrochromic films with fast switching and long lifespan for camouflage and information display\",\"authors\":\"Xingru Wang \\n (, ), Yang Zheng \\n (, ), Lirong Chen \\n (, ), Rui Ge \\n (, ), Chengyu Jiang \\n (, ), Gang Xu \\n (, ), Xiudi Xiao \\n (, )\",\"doi\":\"10.1007/s40843-023-2837-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>V<sub>2</sub>O<sub>5</sub>, which has multicolor and energy storage properties, is a promising electrochromic material for multifunctional electrochromic devices, but its practical application is limited by its poor lifespan and long switching time. In this work, high-performance V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films were fabricated by spraying a V<sub>2</sub>O<sub>5</sub> solution on <i>in situ</i>-grown TiO<sub>2</sub> nanorods. Due to the porous structure formed between the TiO<sub>2</sub> nanorods and the remarkable electron transfer performance of TiO<sub>2</sub>, the switching time of the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films decreased. Moreover, the strong adhesion between the TiO<sub>2</sub> nanorods and F-doped tin oxide (FTO) glass and the increased surface roughness of the substrates significantly improved the cycling stability of the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films. With a large transmittance modulation (47.8% at 668 nm), fast response speed (<i>τ</i><sub>c</sub> = 5.1 s, <i>τ</i><sub>b</sub> = 4.2 s), and long lifespan, V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> films were used as electrodes for the electrochromic energy storage device (EESD), which switched in six colors through color overlay: dark orange, sandy yellow, green-yellow, yellow-green, dark green, and dark brown. Inspired by pixel displays, EESDs were designed by segmenting V<sub>2</sub>O<sub>5</sub> films to stagger the display of the electrochromic and ion storage layers, which presented 11 types of information based on different combinations of colors. This work provides inspiration for developing multifunctional electrochromic devices, especially for camouflage and information displays.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 9\",\"pages\":\"2807 - 2817\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-023-2837-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-023-2837-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multicolor V2O5/TiO2 electrochromic films with fast switching and long lifespan for camouflage and information display
V2O5, which has multicolor and energy storage properties, is a promising electrochromic material for multifunctional electrochromic devices, but its practical application is limited by its poor lifespan and long switching time. In this work, high-performance V2O5/TiO2 films were fabricated by spraying a V2O5 solution on in situ-grown TiO2 nanorods. Due to the porous structure formed between the TiO2 nanorods and the remarkable electron transfer performance of TiO2, the switching time of the V2O5/TiO2 films decreased. Moreover, the strong adhesion between the TiO2 nanorods and F-doped tin oxide (FTO) glass and the increased surface roughness of the substrates significantly improved the cycling stability of the V2O5/TiO2 films. With a large transmittance modulation (47.8% at 668 nm), fast response speed (τc = 5.1 s, τb = 4.2 s), and long lifespan, V2O5/TiO2 films were used as electrodes for the electrochromic energy storage device (EESD), which switched in six colors through color overlay: dark orange, sandy yellow, green-yellow, yellow-green, dark green, and dark brown. Inspired by pixel displays, EESDs were designed by segmenting V2O5 films to stagger the display of the electrochromic and ion storage layers, which presented 11 types of information based on different combinations of colors. This work provides inspiration for developing multifunctional electrochromic devices, especially for camouflage and information displays.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.