Shujian Wang
(, ), Dongjie Liu
(, ), Chunyang Zhang
(, ), Jie Huang
(, ), Shidong Zhao
(, ), Kejian Lu
(, ), Biao Wang
(, ), Hao Peng
(, ), Yitao Si
(, ), Maochang Liu
(, )
{"title":"通过整合多孔 g-C3N4 和碳化三聚氰胺泡沫促进光催化水汽分离","authors":"Shujian Wang \n (, ), Dongjie Liu \n (, ), Chunyang Zhang \n (, ), Jie Huang \n (, ), Shidong Zhao \n (, ), Kejian Lu \n (, ), Biao Wang \n (, ), Hao Peng \n (, ), Yitao Si \n (, ), Maochang Liu \n (, )","doi":"10.1007/s40843-024-3005-y","DOIUrl":null,"url":null,"abstract":"<div><p>We report a photothermally-induced liquid-solid/gas-solid-decoupling photocatalytic water-splitting system, where a carbonized melamine foam (CMF) and a porous g-C<sub>3</sub>N<sub>4</sub> (PCN) serve as the photothermal substrate and model photocatalyst, respectively. Specifically, liquid water is transformed into the gaseous phase over the CMF due to the photothermal effect, and the generated vapor can be split into hydrogen by PCN via the photocatalysis. This unique biphasic photocatalytic system exhibits a high hydrogen production rate of 368.1 µmol h<sup>−1</sup>, which is 2.4 and 25.6 times larger than those of the traditional triphasic PCN system (151.7 µmol h<sup>−1</sup>) and g-C<sub>3</sub>N<sub>4</sub> (CN) system (14.4 µmol h<sup>−1</sup>), respectively. The improved photocatalytic performance is mainly attributed to the optimized energy and mass transfer at the gas-liquid-solid reaction interface, where gas products are rapidly desorbed in the photocatalytic process. This work provides a novel strategy to enhance the photocatalytic performance from the perspectives of energy and mass flow.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2957 - 2964"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting photocatalytic water vapor splitting by the integration of porous g-C3N4 and carbonized melamine foam\",\"authors\":\"Shujian Wang \\n (, ), Dongjie Liu \\n (, ), Chunyang Zhang \\n (, ), Jie Huang \\n (, ), Shidong Zhao \\n (, ), Kejian Lu \\n (, ), Biao Wang \\n (, ), Hao Peng \\n (, ), Yitao Si \\n (, ), Maochang Liu \\n (, )\",\"doi\":\"10.1007/s40843-024-3005-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a photothermally-induced liquid-solid/gas-solid-decoupling photocatalytic water-splitting system, where a carbonized melamine foam (CMF) and a porous g-C<sub>3</sub>N<sub>4</sub> (PCN) serve as the photothermal substrate and model photocatalyst, respectively. Specifically, liquid water is transformed into the gaseous phase over the CMF due to the photothermal effect, and the generated vapor can be split into hydrogen by PCN via the photocatalysis. This unique biphasic photocatalytic system exhibits a high hydrogen production rate of 368.1 µmol h<sup>−1</sup>, which is 2.4 and 25.6 times larger than those of the traditional triphasic PCN system (151.7 µmol h<sup>−1</sup>) and g-C<sub>3</sub>N<sub>4</sub> (CN) system (14.4 µmol h<sup>−1</sup>), respectively. The improved photocatalytic performance is mainly attributed to the optimized energy and mass transfer at the gas-liquid-solid reaction interface, where gas products are rapidly desorbed in the photocatalytic process. This work provides a novel strategy to enhance the photocatalytic performance from the perspectives of energy and mass flow.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 9\",\"pages\":\"2957 - 2964\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3005-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3005-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Boosting photocatalytic water vapor splitting by the integration of porous g-C3N4 and carbonized melamine foam
We report a photothermally-induced liquid-solid/gas-solid-decoupling photocatalytic water-splitting system, where a carbonized melamine foam (CMF) and a porous g-C3N4 (PCN) serve as the photothermal substrate and model photocatalyst, respectively. Specifically, liquid water is transformed into the gaseous phase over the CMF due to the photothermal effect, and the generated vapor can be split into hydrogen by PCN via the photocatalysis. This unique biphasic photocatalytic system exhibits a high hydrogen production rate of 368.1 µmol h−1, which is 2.4 and 25.6 times larger than those of the traditional triphasic PCN system (151.7 µmol h−1) and g-C3N4 (CN) system (14.4 µmol h−1), respectively. The improved photocatalytic performance is mainly attributed to the optimized energy and mass transfer at the gas-liquid-solid reaction interface, where gas products are rapidly desorbed in the photocatalytic process. This work provides a novel strategy to enhance the photocatalytic performance from the perspectives of energy and mass flow.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.