下游侵蚀方式变化所形成的河漫滩地层结构

IF 2.6 2区 地球科学 Q1 GEOLOGY Sedimentology Pub Date : 2024-07-17 DOI:10.1111/sed.13217
Jeffery M. Valenza, Douglas A. Edmonds, Harrison K. Martin, Caitlin Sifuentes, Stephan Toby
{"title":"下游侵蚀方式变化所形成的河漫滩地层结构","authors":"Jeffery M. Valenza, Douglas A. Edmonds, Harrison K. Martin, Caitlin Sifuentes, Stephan Toby","doi":"10.1111/sed.13217","DOIUrl":null,"url":null,"abstract":"Natural river diversion, or avulsion, controls the distribution of channels on a floodplain and channel sandstone bodies within fluvial stratigraphic architecture. Avulsions establish new flow paths and create channels through several recognized processes, or styles. These include reoccupying existing channels, or annexation, downcutting into the floodplain, or incision, and constructing new channels from crevasse‐splay distributary networks, or progradation. Recent remote sensing observations show that avulsion style changes systematically moving downstream along modern fluvial fans but, to date, no studies have assessed the significance of these trends on fluvial fan stratigraphy. Here, spatiotemporal changes in avulsion stratigraphy are investigated within the Salt Wash Member of the Morrison Formation, deposited in the Cordilleran foreland basin during the Late Jurassic epoch. Measured sections and photographic panels were analysed from 23 locations across the Salt Wash extent. Avulsion style was identified in the stratigraphic record by the basal contact of a channel storey with underlying strata: channel–channel contacts indicate annexation, channel–floodplain contacts indicate incision and channel–heterolithic contacts indicate progradation. Contact types change downstream, such that channel–channel and channel–floodplain contacts dominate proximal locations, while channel–heterolithic contacts become increasingly prevalent downstream. Outcrop results were compared to a numerical model of fluvial fan formation and remote‐sensing analysis of avulsions on modern fans. In both additional datasets, channels in proximal fan positions tend to avulse via annexation, reoccupying abandoned channels, while channels in more distal positions tend to avulse via increasingly significant progradation. These findings suggest a relationship between newly recognized downstream changes in avulsion style and well‐established downstream changes in fluvial fan architecture. Furthermore, this suggests that fan architecture can inform interpretations of ancient fluvial dynamics, including avulsion behaviour, and that avulsions can cause stratigraphically significant and measurable changes to fan architecture.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratigraphic architecture of fluvial fans shaped by downstream changes in avulsion style\",\"authors\":\"Jeffery M. Valenza, Douglas A. Edmonds, Harrison K. Martin, Caitlin Sifuentes, Stephan Toby\",\"doi\":\"10.1111/sed.13217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural river diversion, or avulsion, controls the distribution of channels on a floodplain and channel sandstone bodies within fluvial stratigraphic architecture. Avulsions establish new flow paths and create channels through several recognized processes, or styles. These include reoccupying existing channels, or annexation, downcutting into the floodplain, or incision, and constructing new channels from crevasse‐splay distributary networks, or progradation. Recent remote sensing observations show that avulsion style changes systematically moving downstream along modern fluvial fans but, to date, no studies have assessed the significance of these trends on fluvial fan stratigraphy. Here, spatiotemporal changes in avulsion stratigraphy are investigated within the Salt Wash Member of the Morrison Formation, deposited in the Cordilleran foreland basin during the Late Jurassic epoch. Measured sections and photographic panels were analysed from 23 locations across the Salt Wash extent. Avulsion style was identified in the stratigraphic record by the basal contact of a channel storey with underlying strata: channel–channel contacts indicate annexation, channel–floodplain contacts indicate incision and channel–heterolithic contacts indicate progradation. Contact types change downstream, such that channel–channel and channel–floodplain contacts dominate proximal locations, while channel–heterolithic contacts become increasingly prevalent downstream. Outcrop results were compared to a numerical model of fluvial fan formation and remote‐sensing analysis of avulsions on modern fans. In both additional datasets, channels in proximal fan positions tend to avulse via annexation, reoccupying abandoned channels, while channels in more distal positions tend to avulse via increasingly significant progradation. These findings suggest a relationship between newly recognized downstream changes in avulsion style and well‐established downstream changes in fluvial fan architecture. Furthermore, this suggests that fan architecture can inform interpretations of ancient fluvial dynamics, including avulsion behaviour, and that avulsions can cause stratigraphically significant and measurable changes to fan architecture.\",\"PeriodicalId\":21838,\"journal\":{\"name\":\"Sedimentology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sedimentology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/sed.13217\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/sed.13217","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

河流的自然分流或冲刷控制着洪泛平原上的河道分布以及河道地层结构中的砂岩体。崩蚀通过几种公认的过程或方式建立新的水流路径并形成河道。这些过程包括重新占据现有河道(或称吞并)、向洪泛平原下切(或称切割)以及从裂缝分布网络中构建新的河道(或称渐变)。最近的遥感观测结果表明,沿现代河漫滩向下游移动时,崩蚀方式会发生系统性变化,但迄今为止,还没有研究评估过这些趋势对河漫滩地层学的影响。本文研究了侏罗纪晚期沉积于科迪勒拉山前陆盆地的莫里森地层盐洗组的崩塌地层时空变化。对盐水冲刷范围内 23 个地点的测量断面和照片进行了分析。在地层记录中,通过河道层位与下伏地层的基底接触来确定侵蚀方式:河道-河道接触表示吞并,河道-洪泛平原接触表示侵蚀,河道-碎石接触表示前进。接触类型在下游发生变化,河道-河道接触和河道-洪积平原接触在近端位置占主导地位,而河道-片石接触在下游越来越普遍。我们将外测结果与河漫滩形成的数值模型以及对现代河漫滩崩塌的遥感分析进行了比较。在这两个额外的数据集中,位于近端扇形位置的河道往往通过吞并的方式发生冲蚀,重新占据被遗弃的河道,而位于较远位置的河道则往往通过日益显著的前倾的方式发生冲蚀。这些发现表明,新认识到的下游崩蚀方式的变化与已确定的下游河漫滩结构的变化之间存在关系。此外,这还表明,扇形结构可以为解释古代河流动力学提供信息,包括崩塌行为,而且崩塌可以对扇形结构造成地层上显著的、可测量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stratigraphic architecture of fluvial fans shaped by downstream changes in avulsion style
Natural river diversion, or avulsion, controls the distribution of channels on a floodplain and channel sandstone bodies within fluvial stratigraphic architecture. Avulsions establish new flow paths and create channels through several recognized processes, or styles. These include reoccupying existing channels, or annexation, downcutting into the floodplain, or incision, and constructing new channels from crevasse‐splay distributary networks, or progradation. Recent remote sensing observations show that avulsion style changes systematically moving downstream along modern fluvial fans but, to date, no studies have assessed the significance of these trends on fluvial fan stratigraphy. Here, spatiotemporal changes in avulsion stratigraphy are investigated within the Salt Wash Member of the Morrison Formation, deposited in the Cordilleran foreland basin during the Late Jurassic epoch. Measured sections and photographic panels were analysed from 23 locations across the Salt Wash extent. Avulsion style was identified in the stratigraphic record by the basal contact of a channel storey with underlying strata: channel–channel contacts indicate annexation, channel–floodplain contacts indicate incision and channel–heterolithic contacts indicate progradation. Contact types change downstream, such that channel–channel and channel–floodplain contacts dominate proximal locations, while channel–heterolithic contacts become increasingly prevalent downstream. Outcrop results were compared to a numerical model of fluvial fan formation and remote‐sensing analysis of avulsions on modern fans. In both additional datasets, channels in proximal fan positions tend to avulse via annexation, reoccupying abandoned channels, while channels in more distal positions tend to avulse via increasingly significant progradation. These findings suggest a relationship between newly recognized downstream changes in avulsion style and well‐established downstream changes in fluvial fan architecture. Furthermore, this suggests that fan architecture can inform interpretations of ancient fluvial dynamics, including avulsion behaviour, and that avulsions can cause stratigraphically significant and measurable changes to fan architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sedimentology
Sedimentology 地学-地质学
CiteScore
8.20
自引率
11.40%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The international leader in its field, Sedimentology publishes ground-breaking research from across the spectrum of sedimentology, sedimentary geology and sedimentary geochemistry. Areas covered include: experimental and theoretical grain transport; sediment fluxes; modern and ancient sedimentary environments; sequence stratigraphy sediment-organism interaction; palaeosoils; diagenesis; stable isotope geochemistry; environmental sedimentology
期刊最新文献
Hydrothermal activity near the Permian–Triassic transition in the south‐western Ordos Basin, China: Evidence from carbonate cementation in Upper Permian sandstones Erratum: Settling velocity and drag coefficient of platy shell fragments [Sedimentology, 67(4), 2095–2110] Towards an improved understanding of Ca–Mg carbonates with nonplanar surfaces: An experimental approach Recognition of a cryptic maximum flooding surface in shallow marine carbonate sequences using geochemical (Y/Ho) proxy data Enhanced mud retention as an autogenic mechanism for sustained delta growth: Insight from records of the Lafourche subdelta of the Mississippi River
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1