不同原子电负性低维体系中摩擦力对温度和滑动速度的依赖性

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-07-21 DOI:10.1007/s11249-024-01895-9
Jie Gao, Jianjun Wang, Chong Qiao, Yu Jia, Bo N. J. Persson
{"title":"不同原子电负性低维体系中摩擦力对温度和滑动速度的依赖性","authors":"Jie Gao,&nbsp;Jianjun Wang,&nbsp;Chong Qiao,&nbsp;Yu Jia,&nbsp;Bo N. J. Persson","doi":"10.1007/s11249-024-01895-9","DOIUrl":null,"url":null,"abstract":"<div><p>Using the molecular dynamics simulations we study sliding friction of two-dimensional systems with atom electronegative difference. We show that systems with large atom electronegative difference exhibit larger friction than systems with similar structures but less polarity. We demonstrate that the sliding friction along polar paths gives larger friction than along nonpolar paths, and exhibits stronger stick–slip behavior. Due to inertia and thermal effects the sliding path deviates from the minimum-energy path. We show that the electronegative friction is reduced by thermal fluctuations and that it depends linearly on the logarithm of the sliding velocity. Our findings will supply insight into the nature of the friction in low dimensional systems, which could facilitate the design of nanodevices.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dependency of Friction on Temperature and Sliding Velocity in Low Dimensional Systems with Different Atom Electronegativity\",\"authors\":\"Jie Gao,&nbsp;Jianjun Wang,&nbsp;Chong Qiao,&nbsp;Yu Jia,&nbsp;Bo N. J. Persson\",\"doi\":\"10.1007/s11249-024-01895-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the molecular dynamics simulations we study sliding friction of two-dimensional systems with atom electronegative difference. We show that systems with large atom electronegative difference exhibit larger friction than systems with similar structures but less polarity. We demonstrate that the sliding friction along polar paths gives larger friction than along nonpolar paths, and exhibits stronger stick–slip behavior. Due to inertia and thermal effects the sliding path deviates from the minimum-energy path. We show that the electronegative friction is reduced by thermal fluctuations and that it depends linearly on the logarithm of the sliding velocity. Our findings will supply insight into the nature of the friction in low dimensional systems, which could facilitate the design of nanodevices.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01895-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01895-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们利用分子动力学模拟研究了具有原子电负性差异的二维系统的滑动摩擦力。我们发现,原子电负性差异较大的体系比结构相似但极性较小的体系表现出更大的摩擦力。我们证明,沿极性路径的滑动摩擦比沿非极性路径的滑动摩擦大,并表现出更强的粘滑行为。由于惯性和热效应,滑动路径偏离了最小能量路径。我们的研究表明,电负摩擦力会因热量波动而减小,并与滑动速度的对数成线性关系。我们的研究结果将有助于深入了解低维系统中摩擦的性质,从而促进纳米器件的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Dependency of Friction on Temperature and Sliding Velocity in Low Dimensional Systems with Different Atom Electronegativity

Using the molecular dynamics simulations we study sliding friction of two-dimensional systems with atom electronegative difference. We show that systems with large atom electronegative difference exhibit larger friction than systems with similar structures but less polarity. We demonstrate that the sliding friction along polar paths gives larger friction than along nonpolar paths, and exhibits stronger stick–slip behavior. Due to inertia and thermal effects the sliding path deviates from the minimum-energy path. We show that the electronegative friction is reduced by thermal fluctuations and that it depends linearly on the logarithm of the sliding velocity. Our findings will supply insight into the nature of the friction in low dimensional systems, which could facilitate the design of nanodevices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Wear Mechanism and Wear Debris Characterization of ULWPE in Multidirectional Motion Cobalt- and Chromium-Oxide-Based Coatings: Thermally Spraying a Glaze Layer Visualization of Structural Deformation of Polymer Additives in Oil Under High Shear Flow Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1