{"title":"软件定义水下物联网的多目标路径计算方法","authors":"Reza Mohammadi","doi":"10.1007/s12145-024-01411-6","DOIUrl":null,"url":null,"abstract":"<p>Advances in the Internet of Things (IoT) and underwater communications have led to extensive research in academia and industry in recent years to implement underwater applications. The successful operation of these applications depends on the use of efficient communication protocols and solutions. Given the dynamic and bandwidth-limited nature of underwater communications, the use of condition-aware routing techniques can mitigate some of these limitations. In this paper, we propose a multi-objective path computation approach for underwater IoT networks that aims to balance energy consumption and maximize network throughput. The proposed mechanism leverages the benefits of Software-Defined Networking (SDN) architecture to collect information about the coordinates of underwater nodes and then calculates the optimal paths to the destination node using a multi-objective mathematical model. Once the paths are calculated, the underwater nodes send data packets towards the destination based on the calculated paths. Simulation results demonstrate that the proposed solution increases the throughput of the network while balancing energy consumption compared to baseline methods.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"339 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective path computation approach for software defined internet of underwater things\",\"authors\":\"Reza Mohammadi\",\"doi\":\"10.1007/s12145-024-01411-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advances in the Internet of Things (IoT) and underwater communications have led to extensive research in academia and industry in recent years to implement underwater applications. The successful operation of these applications depends on the use of efficient communication protocols and solutions. Given the dynamic and bandwidth-limited nature of underwater communications, the use of condition-aware routing techniques can mitigate some of these limitations. In this paper, we propose a multi-objective path computation approach for underwater IoT networks that aims to balance energy consumption and maximize network throughput. The proposed mechanism leverages the benefits of Software-Defined Networking (SDN) architecture to collect information about the coordinates of underwater nodes and then calculates the optimal paths to the destination node using a multi-objective mathematical model. Once the paths are calculated, the underwater nodes send data packets towards the destination based on the calculated paths. Simulation results demonstrate that the proposed solution increases the throughput of the network while balancing energy consumption compared to baseline methods.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"339 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01411-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01411-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multi-objective path computation approach for software defined internet of underwater things
Advances in the Internet of Things (IoT) and underwater communications have led to extensive research in academia and industry in recent years to implement underwater applications. The successful operation of these applications depends on the use of efficient communication protocols and solutions. Given the dynamic and bandwidth-limited nature of underwater communications, the use of condition-aware routing techniques can mitigate some of these limitations. In this paper, we propose a multi-objective path computation approach for underwater IoT networks that aims to balance energy consumption and maximize network throughput. The proposed mechanism leverages the benefits of Software-Defined Networking (SDN) architecture to collect information about the coordinates of underwater nodes and then calculates the optimal paths to the destination node using a multi-objective mathematical model. Once the paths are calculated, the underwater nodes send data packets towards the destination based on the calculated paths. Simulation results demonstrate that the proposed solution increases the throughput of the network while balancing energy consumption compared to baseline methods.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.