结合海洋环境关系和机器学习绘制沿海景观数字地图

IF 2.7 4区 地球科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Earth Science Informatics Pub Date : 2024-07-19 DOI:10.1007/s12145-024-01386-4
Kui Wang
{"title":"结合海洋环境关系和机器学习绘制沿海景观数字地图","authors":"Kui Wang","doi":"10.1007/s12145-024-01386-4","DOIUrl":null,"url":null,"abstract":"<p>Currently, the Internet of Things (IoT) is in a premature phase. Although it is growing at a steady pace, there is still a need for further research in the field of security. In this work, the Fujian Province was selected as the study area. The climate, parent material and topographic information of the area were obtained, and the soil-landscape quantitative model was used to quantitatively obtain the relationship between the attributes of coastal sand and gravel soil. On the basis of soil type map, according to the difference of soil type elevation distribution, further predict the soil type distribution and make a map. The results show that the method can achieve more than 80% coincidence with the survey results on the scale of soil digital mapping and can make up for the missing areas of the survey.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"85 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital mapping of coastal landscapes integrating ocean-environment relationships and machine learning\",\"authors\":\"Kui Wang\",\"doi\":\"10.1007/s12145-024-01386-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, the Internet of Things (IoT) is in a premature phase. Although it is growing at a steady pace, there is still a need for further research in the field of security. In this work, the Fujian Province was selected as the study area. The climate, parent material and topographic information of the area were obtained, and the soil-landscape quantitative model was used to quantitatively obtain the relationship between the attributes of coastal sand and gravel soil. On the basis of soil type map, according to the difference of soil type elevation distribution, further predict the soil type distribution and make a map. The results show that the method can achieve more than 80% coincidence with the survey results on the scale of soil digital mapping and can make up for the missing areas of the survey.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01386-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01386-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目前,物联网(IoT)还处于不成熟阶段。虽然它正在稳步发展,但在安全领域仍有进一步研究的必要。本研究选择福建省作为研究区域。获得了该地区的气候、母质和地形信息,并利用土壤-景观定量模型定量地获得了沿海砂砾土的属性关系。在土壤类型图的基础上,根据土壤类型高程分布差异,进一步预测土壤类型分布并制图。结果表明,该方法在土壤数字制图比例尺上与调查成果的吻合度可达 80%以上,可以弥补调查的缺失区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital mapping of coastal landscapes integrating ocean-environment relationships and machine learning

Currently, the Internet of Things (IoT) is in a premature phase. Although it is growing at a steady pace, there is still a need for further research in the field of security. In this work, the Fujian Province was selected as the study area. The climate, parent material and topographic information of the area were obtained, and the soil-landscape quantitative model was used to quantitatively obtain the relationship between the attributes of coastal sand and gravel soil. On the basis of soil type map, according to the difference of soil type elevation distribution, further predict the soil type distribution and make a map. The results show that the method can achieve more than 80% coincidence with the survey results on the scale of soil digital mapping and can make up for the missing areas of the survey.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Science Informatics
Earth Science Informatics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
4.60
自引率
3.60%
发文量
157
审稿时长
4.3 months
期刊介绍: The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.
期刊最新文献
Estimation of the elastic modulus of basaltic rocks using machine learning methods Feature-adaptive FPN with multiscale context integration for underwater object detection Autoregressive modelling of tropospheric radio refractivity over selected locations in tropical Nigeria using artificial neural network Time series land subsidence monitoring and prediction based on SBAS-InSAR and GeoTemporal transformer model Drought index time series forecasting via three-in-one machine learning concept for the Euphrates basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1