近海风速和风速增量的分布和相关特性

So-Kumneth Sim, Philipp Maass, H. Eduardo Roman
{"title":"近海风速和风速增量的分布和相关特性","authors":"So-Kumneth Sim, Philipp Maass, H. Eduardo Roman","doi":"arxiv-2407.12934","DOIUrl":null,"url":null,"abstract":"We determine distributions and correlation properties of offshore wind speeds\nand wind speed increments by analyzing wind data sampled with a resolution of\none second for 20 months at different heights over the sea level in the North\nSea. Distributions of horizontal wind speeds can be fitted to Weibull\ndistributions with shape and scale parameters varying weakly with the vertical\nheight separation. Kullback-Leibler divergences between distributions at\ndifferent heights change with the squared logarithm of the height ratio.\nCross-correlations between time derivates of wind speeds are long-term\nanticorrelated and their correlations functions satisfy sum rules.\nDistributions of horizontal wind speed increments change from a tent-like shape\nto a Gaussian with rising increment lag. A surprising peak occurs in the left\ntail of the increment distributions for lags in a range $10-200\\,{\\rm km}$\nafter applying the Taylor's hypothesis locally to transform time lags into\ndistances. The peak is decisive in order to obtain an expected and observed\nlinear scaling of third-order structure functions with distance. This suggests\nthat it is an intrinsic feature of atmospheric turbulence.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"33 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions and correlation properties of offshore wind speeds and wind speed increments\",\"authors\":\"So-Kumneth Sim, Philipp Maass, H. Eduardo Roman\",\"doi\":\"arxiv-2407.12934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine distributions and correlation properties of offshore wind speeds\\nand wind speed increments by analyzing wind data sampled with a resolution of\\none second for 20 months at different heights over the sea level in the North\\nSea. Distributions of horizontal wind speeds can be fitted to Weibull\\ndistributions with shape and scale parameters varying weakly with the vertical\\nheight separation. Kullback-Leibler divergences between distributions at\\ndifferent heights change with the squared logarithm of the height ratio.\\nCross-correlations between time derivates of wind speeds are long-term\\nanticorrelated and their correlations functions satisfy sum rules.\\nDistributions of horizontal wind speed increments change from a tent-like shape\\nto a Gaussian with rising increment lag. A surprising peak occurs in the left\\ntail of the increment distributions for lags in a range $10-200\\\\,{\\\\rm km}$\\nafter applying the Taylor's hypothesis locally to transform time lags into\\ndistances. The peak is decisive in order to obtain an expected and observed\\nlinear scaling of third-order structure functions with distance. This suggests\\nthat it is an intrinsic feature of atmospheric turbulence.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"33 10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过分析北海不同海平面高度上 20 个月分辨率为一秒的风采样数据,确定了近海风速和风速增量的分布和相关特性。水平风速的分布可拟合为魏布分布,其形状和尺度参数随垂直高度分离而微弱变化。不同高度分布之间的 Kullback-Leibler 发散随高度比的平方对数变化。风速时间导数之间的交叉相关是长期相关的,其相关函数满足和规则。在局部应用泰勒假设将时滞转换为距离之后,在滞后范围为 10-200,{\rm km}$的增量分布的左尾出现了一个令人惊讶的峰值。这个峰值对获得三阶结构函数随距离的预期和观测线性缩放具有决定性作用。这表明它是大气湍流的一个固有特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributions and correlation properties of offshore wind speeds and wind speed increments
We determine distributions and correlation properties of offshore wind speeds and wind speed increments by analyzing wind data sampled with a resolution of one second for 20 months at different heights over the sea level in the North Sea. Distributions of horizontal wind speeds can be fitted to Weibull distributions with shape and scale parameters varying weakly with the vertical height separation. Kullback-Leibler divergences between distributions at different heights change with the squared logarithm of the height ratio. Cross-correlations between time derivates of wind speeds are long-term anticorrelated and their correlations functions satisfy sum rules. Distributions of horizontal wind speed increments change from a tent-like shape to a Gaussian with rising increment lag. A surprising peak occurs in the left tail of the increment distributions for lags in a range $10-200\,{\rm km}$ after applying the Taylor's hypothesis locally to transform time lags into distances. The peak is decisive in order to obtain an expected and observed linear scaling of third-order structure functions with distance. This suggests that it is an intrinsic feature of atmospheric turbulence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1